Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's go through the concepts of mechanical energy, kinetic energy, and potential energy step by step to identify the correct equation.
1. Mechanical Energy (ME):
Mechanical energy is the sum of kinetic and potential energies in a system. It represents the total energy of the system due to both its motion and its position.
2. Kinetic Energy (KE):
Kinetic energy is the energy that an object possesses due to its motion. For an object of mass [tex]\( m \)[/tex] moving at velocity [tex]\( v \)[/tex], kinetic energy is given by:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
3. Potential Energy (PE):
Potential energy is the energy stored in an object due to its position in a force field, such as gravity. For example, the gravitational potential energy of an object of mass [tex]\( m \)[/tex] at height [tex]\( h \)[/tex] in a gravitational field with acceleration [tex]\( g \)[/tex] is:
[tex]\[ PE = mgh \][/tex]
4. Relationship between ME, KE, and PE:
The mechanical energy of a system is the sum of its kinetic energy and potential energy. This relationship can be written as:
[tex]\[ ME = KE + PE \][/tex]
Given the options, this explains why the correct equation is:
[tex]\[ ME = KE + PE \][/tex]
Thus, the correct equation showing the relationship between mechanical energy, kinetic energy, and potential energy is:
[tex]\[ ME = KE + PE \][/tex]
1. Mechanical Energy (ME):
Mechanical energy is the sum of kinetic and potential energies in a system. It represents the total energy of the system due to both its motion and its position.
2. Kinetic Energy (KE):
Kinetic energy is the energy that an object possesses due to its motion. For an object of mass [tex]\( m \)[/tex] moving at velocity [tex]\( v \)[/tex], kinetic energy is given by:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
3. Potential Energy (PE):
Potential energy is the energy stored in an object due to its position in a force field, such as gravity. For example, the gravitational potential energy of an object of mass [tex]\( m \)[/tex] at height [tex]\( h \)[/tex] in a gravitational field with acceleration [tex]\( g \)[/tex] is:
[tex]\[ PE = mgh \][/tex]
4. Relationship between ME, KE, and PE:
The mechanical energy of a system is the sum of its kinetic energy and potential energy. This relationship can be written as:
[tex]\[ ME = KE + PE \][/tex]
Given the options, this explains why the correct equation is:
[tex]\[ ME = KE + PE \][/tex]
Thus, the correct equation showing the relationship between mechanical energy, kinetic energy, and potential energy is:
[tex]\[ ME = KE + PE \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.