Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Solve for [tex]\( x \)[/tex]:

[tex]\[ (2x - 3)(x + 4) = 0 \][/tex]

Let [tex]\( x = a \)[/tex] and [tex]\( x = b \)[/tex] be unique solutions to the given equation. What is the value of [tex]\( -a - b \)[/tex]?

[tex]\(\square\)[/tex]

Sagot :

To solve the equation [tex]\((2x - 3)(x + 4) = 0\)[/tex], we need to find the roots of the equation by setting each factor equal to zero.

1. Set [tex]\(2x - 3 = 0\)[/tex]:
[tex]\[ 2x - 3 = 0 \][/tex]
Add 3 to both sides:
[tex]\[ 2x = 3 \][/tex]
Now, divide both sides by 2:
[tex]\[ x = \frac{3}{2} \][/tex]

2. Set [tex]\(x + 4 = 0\)[/tex]:
[tex]\[ x + 4 = 0 \][/tex]
Subtract 4 from both sides:
[tex]\[ x = -4 \][/tex]

Thus, the roots of the equation are [tex]\(x = \frac{3}{2}\)[/tex] and [tex]\(x = -4\)[/tex]. Let's denote [tex]\(a = \frac{3}{2}\)[/tex] and [tex]\(b = -4\)[/tex].

We are asked to find the value of [tex]\(-a - b\)[/tex].

Substitute [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the expression:
[tex]\[ -a - b = -\left(\frac{3}{2}\right) - (-4) \][/tex]

First, compute the negation of [tex]\(\frac{3}{2}\)[/tex]:
[tex]\[ -\left(\frac{3}{2}\right) = -\frac{3}{2} \][/tex]

Next, simplify the negation of [tex]\(-4\)[/tex]:
[tex]\[ -(-4) = 4 \][/tex]

Now, combine these results:
[tex]\[ -a - b = -\frac{3}{2} + 4 \][/tex]

Convert 4 to a fraction with a common denominator:
[tex]\[ 4 = \frac{8}{2} \][/tex]

Add the fractions:
[tex]\[ -\frac{3}{2} + \frac{8}{2} = \frac{-3 + 8}{2} = \frac{5}{2} \][/tex]

Therefore, the value of [tex]\(-a - b\)[/tex] is:
[tex]\[ \boxed{\frac{5}{2}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.