Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Select the correct answer from the drop-down menu.

What is the kinetic energy of the roller coaster at the top and bottom of the hill? Use [tex]$KE = \frac{1}{2} mv^2$[/tex].

A kiddie roller coaster car has a mass of 100 kilograms. At the top of a hill, it is moving at a speed of 3 meters per second. After reaching the bottom of the hill, its speed doubles.

The car's kinetic energy at the bottom is [tex]$\square$[/tex] its kinetic energy at the top. The car has [tex]$\square$[/tex] joules of kinetic energy at the bottom of the hill.


Sagot :

To determine the kinetic energy of the roller coaster at the top and bottom of the hill, we need to use the kinetic energy formula [tex]\( KE = \frac{1}{2} m v^2 \)[/tex], where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity. Let's break this down step-by-step:

1. Calculate the kinetic energy at the top of the hill:
- Given:
- Mass ([tex]\( m \)[/tex]) = 100 kg
- Speed at the top ([tex]\( v_{\text{top}} \)[/tex]) = 3 m/s
- Use the kinetic energy formula:
[tex]\[ KE_{\text{top}} = \frac{1}{2} \times 100 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
- Simplifying further:
[tex]\[ KE_{\text{top}} = 0.5 \times 100 \times 9 \][/tex]
[tex]\[ KE_{\text{top}} = 450 \, \text{joules} \][/tex]

2. Determine the speed at the bottom of the hill:
- The speed doubles at the bottom, so:
- Speed at the bottom ([tex]\( v_{\text{bottom}} \)[/tex]) = [tex]\( 2 \times 3 \)[/tex] m/s = 6 m/s

3. Calculate the kinetic energy at the bottom of the hill:
- Given:
- Mass ([tex]\( m \)[/tex]) = 100 kg
- Speed at the bottom ([tex]\( v_{\text{bottom}} \)[/tex]) = 6 m/s
- Use the kinetic energy formula:
[tex]\[ KE_{\text{bottom}} = \frac{1}{2} \times 100 \, \text{kg} \times (6 \, \text{m/s})^2 \][/tex]
- Simplifying further:
[tex]\[ KE_{\text{bottom}} = 0.5 \times 100 \times 36 \][/tex]
[tex]\[ KE_{\text{bottom}} = 1800 \, \text{joules} \][/tex]

4. Compare the kinetic energies at the top and bottom:
- The car's kinetic energy at the bottom is [tex]\( \frac{KE_{\text{bottom}}}{KE_{\text{top}}} \)[/tex]:
[tex]\[ \text{Ratio} = \frac{1800 \, \text{joules}}{450 \, \text{joules}} = 4 \][/tex]

So, the car’s kinetic energy at the bottom is 4 times its kinetic energy at the top. The car has 1800 joules of kinetic energy at the bottom of the hill.

The correct answers for the drop-down menu are:
- The car's kinetic energy at the bottom is 4 times its kinetic energy at the top.
- The car has 1800 joules of kinetic energy at the bottom of the hill.