Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve this step-by-step.
1. Calculate the principal amount financed:
- The total cost including tax is [tex]$850.00. - The down payment made is $[/tex]150.00.
- Therefore, the principal amount financed is [tex]\(850.00 - 150.00 = 700.00\)[/tex].
2. Calculate the monthly interest rate:
- The annual interest rate is 14%.
- The monthly interest rate is [tex]\( \frac{14\%}{12} = 0.014 / 12 = 0.011666666666666667\)[/tex].
3. Calculate [tex]\(c\)[/tex]:
- Using the formula [tex]\(c = \frac{\text{Principal} \times \text{Monthly Interest Rate} \times \text{Loan Term in Months}}{\text{Loan Term in Months} + 1}\)[/tex]:
- Here, \text{Principal} is [tex]$700.00. - \text{Loan Term in Months} is 12. - Monthly Interest Rate is 0.011666666666666667. - Plugging in the numbers: \(c = \frac{700.00 \times 0.011666666666666667 \times 12}{12 + 1}\). - \(c = \frac{700.00 \times 0.011666666666666667 \times 12}{ 13} = 7.54\). 4. Calculate the total of the payments: - The total of the payments is the amount financed plus \(c\). - Therefore, the total of the payments is \(700.00 + 7.54 = 707.54\). 5. Calculate the monthly payment: - The monthly payment is the total of the payments divided by the number of payments (loan term in months). - Therefore, the monthly payment is \( \frac{707.54}{12} = 58.96\). Now let's fill in the blanks: - \( c = \$[/tex]\ 7.54 \)
- [tex]\( \text{Total of payments} = \text{amount financed} + c = \$ 700.00 + \$ 7.54 = \$ 707.54\)[/tex]
- [tex]\( \text{Total of payments} \div \text{number of payments} = \text{monthly payment} = \frac{707.54}{12} = \$ 58.96\)[/tex]
Thus:
- [tex]\( c = \$ 7.54 \)[/tex]
- Total of payments [tex]$= \$[/tex] 707.54 \)
- Monthly payment [tex]$= \$[/tex] 58.96 \)
1. Calculate the principal amount financed:
- The total cost including tax is [tex]$850.00. - The down payment made is $[/tex]150.00.
- Therefore, the principal amount financed is [tex]\(850.00 - 150.00 = 700.00\)[/tex].
2. Calculate the monthly interest rate:
- The annual interest rate is 14%.
- The monthly interest rate is [tex]\( \frac{14\%}{12} = 0.014 / 12 = 0.011666666666666667\)[/tex].
3. Calculate [tex]\(c\)[/tex]:
- Using the formula [tex]\(c = \frac{\text{Principal} \times \text{Monthly Interest Rate} \times \text{Loan Term in Months}}{\text{Loan Term in Months} + 1}\)[/tex]:
- Here, \text{Principal} is [tex]$700.00. - \text{Loan Term in Months} is 12. - Monthly Interest Rate is 0.011666666666666667. - Plugging in the numbers: \(c = \frac{700.00 \times 0.011666666666666667 \times 12}{12 + 1}\). - \(c = \frac{700.00 \times 0.011666666666666667 \times 12}{ 13} = 7.54\). 4. Calculate the total of the payments: - The total of the payments is the amount financed plus \(c\). - Therefore, the total of the payments is \(700.00 + 7.54 = 707.54\). 5. Calculate the monthly payment: - The monthly payment is the total of the payments divided by the number of payments (loan term in months). - Therefore, the monthly payment is \( \frac{707.54}{12} = 58.96\). Now let's fill in the blanks: - \( c = \$[/tex]\ 7.54 \)
- [tex]\( \text{Total of payments} = \text{amount financed} + c = \$ 700.00 + \$ 7.54 = \$ 707.54\)[/tex]
- [tex]\( \text{Total of payments} \div \text{number of payments} = \text{monthly payment} = \frac{707.54}{12} = \$ 58.96\)[/tex]
Thus:
- [tex]\( c = \$ 7.54 \)[/tex]
- Total of payments [tex]$= \$[/tex] 707.54 \)
- Monthly payment [tex]$= \$[/tex] 58.96 \)
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.