Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the expression [tex]\(\sqrt{-98}\)[/tex], we need to follow a series of steps that involve understanding the properties of square roots and imaginary numbers.
1. Identifying the Imaginary Unit:
We know that [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.
2. Separating the Components:
Given the expression [tex]\(\sqrt{-98}\)[/tex], we can rewrite it as:
[tex]\[ \sqrt{-98} = \sqrt{98} \cdot \sqrt{-1} = \sqrt{98} \cdot i \][/tex]
3. Simplifying the Square Root of 98:
Next, let's simplify [tex]\(\sqrt{98}\)[/tex]. We need to break this down into its prime factors:
[tex]\[ 98 = 2 \times 49 = 2 \times 7^2 \][/tex]
Therefore,
[tex]\[ \sqrt{98} = \sqrt{2 \times 7^2} \][/tex]
4. Using the Property of Square Roots:
We can further simplify using the property [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex]:
[tex]\[ \sqrt{98} = \sqrt{2 \times 7^2} = \sqrt{2} \times \sqrt{7^2} = \sqrt{2} \times 7 \][/tex]
5. Combining with the Imaginary Unit:
Substituting this back into our expression:
[tex]\[ \sqrt{-98} = \sqrt{98} \cdot i = 7 \sqrt{2} \cdot i = 7i\sqrt{2} \][/tex]
Thus, the expression [tex]\(\sqrt{-98}\)[/tex] simplifies to [tex]\(7i\sqrt{2}\)[/tex].
Therefore, the correct option is:
[tex]\[ \boxed{7i\sqrt{2}} \][/tex]
So the answer is C: [tex]\(7 i \sqrt{2}\)[/tex].
1. Identifying the Imaginary Unit:
We know that [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.
2. Separating the Components:
Given the expression [tex]\(\sqrt{-98}\)[/tex], we can rewrite it as:
[tex]\[ \sqrt{-98} = \sqrt{98} \cdot \sqrt{-1} = \sqrt{98} \cdot i \][/tex]
3. Simplifying the Square Root of 98:
Next, let's simplify [tex]\(\sqrt{98}\)[/tex]. We need to break this down into its prime factors:
[tex]\[ 98 = 2 \times 49 = 2 \times 7^2 \][/tex]
Therefore,
[tex]\[ \sqrt{98} = \sqrt{2 \times 7^2} \][/tex]
4. Using the Property of Square Roots:
We can further simplify using the property [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex]:
[tex]\[ \sqrt{98} = \sqrt{2 \times 7^2} = \sqrt{2} \times \sqrt{7^2} = \sqrt{2} \times 7 \][/tex]
5. Combining with the Imaginary Unit:
Substituting this back into our expression:
[tex]\[ \sqrt{-98} = \sqrt{98} \cdot i = 7 \sqrt{2} \cdot i = 7i\sqrt{2} \][/tex]
Thus, the expression [tex]\(\sqrt{-98}\)[/tex] simplifies to [tex]\(7i\sqrt{2}\)[/tex].
Therefore, the correct option is:
[tex]\[ \boxed{7i\sqrt{2}} \][/tex]
So the answer is C: [tex]\(7 i \sqrt{2}\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.