At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the expression [tex]\(\sqrt{-98}\)[/tex], we need to follow a series of steps that involve understanding the properties of square roots and imaginary numbers.
1. Identifying the Imaginary Unit:
We know that [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.
2. Separating the Components:
Given the expression [tex]\(\sqrt{-98}\)[/tex], we can rewrite it as:
[tex]\[ \sqrt{-98} = \sqrt{98} \cdot \sqrt{-1} = \sqrt{98} \cdot i \][/tex]
3. Simplifying the Square Root of 98:
Next, let's simplify [tex]\(\sqrt{98}\)[/tex]. We need to break this down into its prime factors:
[tex]\[ 98 = 2 \times 49 = 2 \times 7^2 \][/tex]
Therefore,
[tex]\[ \sqrt{98} = \sqrt{2 \times 7^2} \][/tex]
4. Using the Property of Square Roots:
We can further simplify using the property [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex]:
[tex]\[ \sqrt{98} = \sqrt{2 \times 7^2} = \sqrt{2} \times \sqrt{7^2} = \sqrt{2} \times 7 \][/tex]
5. Combining with the Imaginary Unit:
Substituting this back into our expression:
[tex]\[ \sqrt{-98} = \sqrt{98} \cdot i = 7 \sqrt{2} \cdot i = 7i\sqrt{2} \][/tex]
Thus, the expression [tex]\(\sqrt{-98}\)[/tex] simplifies to [tex]\(7i\sqrt{2}\)[/tex].
Therefore, the correct option is:
[tex]\[ \boxed{7i\sqrt{2}} \][/tex]
So the answer is C: [tex]\(7 i \sqrt{2}\)[/tex].
1. Identifying the Imaginary Unit:
We know that [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.
2. Separating the Components:
Given the expression [tex]\(\sqrt{-98}\)[/tex], we can rewrite it as:
[tex]\[ \sqrt{-98} = \sqrt{98} \cdot \sqrt{-1} = \sqrt{98} \cdot i \][/tex]
3. Simplifying the Square Root of 98:
Next, let's simplify [tex]\(\sqrt{98}\)[/tex]. We need to break this down into its prime factors:
[tex]\[ 98 = 2 \times 49 = 2 \times 7^2 \][/tex]
Therefore,
[tex]\[ \sqrt{98} = \sqrt{2 \times 7^2} \][/tex]
4. Using the Property of Square Roots:
We can further simplify using the property [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex]:
[tex]\[ \sqrt{98} = \sqrt{2 \times 7^2} = \sqrt{2} \times \sqrt{7^2} = \sqrt{2} \times 7 \][/tex]
5. Combining with the Imaginary Unit:
Substituting this back into our expression:
[tex]\[ \sqrt{-98} = \sqrt{98} \cdot i = 7 \sqrt{2} \cdot i = 7i\sqrt{2} \][/tex]
Thus, the expression [tex]\(\sqrt{-98}\)[/tex] simplifies to [tex]\(7i\sqrt{2}\)[/tex].
Therefore, the correct option is:
[tex]\[ \boxed{7i\sqrt{2}} \][/tex]
So the answer is C: [tex]\(7 i \sqrt{2}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.