Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equation of the circle given its center and a point on the circle, we need to follow these steps:
1. Identify the center of the circle [tex]\((h, k)\)[/tex] and substitute into [tex]\((x - h)^2 + (y - k)^2\)[/tex].
2. Calculate the radius [tex]\(r\)[/tex] using the distance formula between the center and the given point.
3. Square the radius to get [tex]\(r^2\)[/tex] and complete the standard form of the circle [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex].
Given:
- Center of the circle [tex]\((h, k) = (5, -4)\)[/tex]
- Point on the circle [tex]\((x_1, y_1) = (-3, 2)\)[/tex]
From these steps, we get:
1. Substitute [tex]\(h = 5\)[/tex] and [tex]\(k = -4\)[/tex] into the standard form:
[tex]\[(x - 5)^2 + (y + 4)^2 = r^2\][/tex]
2. Calculate the radius [tex]\(r\)[/tex] by finding the distance between the center and the given point:
[tex]\[ r = \sqrt{((-3) - 5)^2 + (2 - (-4))^2} = \sqrt{(-8)^2 + (6)^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \][/tex]
3. Substitute [tex]\(r\)[/tex] into the equation:
[tex]\[ r^2 = 10^2 = 100 \][/tex]
Therefore, the equation of the circle in standard form is:
[tex]\[ (x - 5)^2 + (y + 4)^2 = 100 \][/tex]
Finally, filling in the blanks in the given format:
[tex]\[ (x + \boxed{-5})^2 + (y + \boxed{4})^2 = \boxed{100} \][/tex]
1. Identify the center of the circle [tex]\((h, k)\)[/tex] and substitute into [tex]\((x - h)^2 + (y - k)^2\)[/tex].
2. Calculate the radius [tex]\(r\)[/tex] using the distance formula between the center and the given point.
3. Square the radius to get [tex]\(r^2\)[/tex] and complete the standard form of the circle [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex].
Given:
- Center of the circle [tex]\((h, k) = (5, -4)\)[/tex]
- Point on the circle [tex]\((x_1, y_1) = (-3, 2)\)[/tex]
From these steps, we get:
1. Substitute [tex]\(h = 5\)[/tex] and [tex]\(k = -4\)[/tex] into the standard form:
[tex]\[(x - 5)^2 + (y + 4)^2 = r^2\][/tex]
2. Calculate the radius [tex]\(r\)[/tex] by finding the distance between the center and the given point:
[tex]\[ r = \sqrt{((-3) - 5)^2 + (2 - (-4))^2} = \sqrt{(-8)^2 + (6)^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \][/tex]
3. Substitute [tex]\(r\)[/tex] into the equation:
[tex]\[ r^2 = 10^2 = 100 \][/tex]
Therefore, the equation of the circle in standard form is:
[tex]\[ (x - 5)^2 + (y + 4)^2 = 100 \][/tex]
Finally, filling in the blanks in the given format:
[tex]\[ (x + \boxed{-5})^2 + (y + \boxed{4})^2 = \boxed{100} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.