Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's break down the problem and solve it step-by-step.
### Step 1: Identify given information
- The provided table gives us the number of individuals for each genotype.
- Homozygous dominant (TT): 26 individuals
- Heterozygous (Tt): 64 individuals
- Homozygous recessive (tt): 20 individuals
- We are given a hint that there are a total of 220 alleles in the population.
### Step 2: Calculate the number of dominant (T) and recessive (t) alleles
- Each TT individual contributes 2 dominant alleles (T).
- Each Tt individual contributes 1 dominant allele (T) and 1 recessive allele (t).
- Each tt individual contributes 2 recessive alleles (t).
From the information given:
- The number of dominant alleles (T):
[tex]\[ (2 \times \text{number of TT individuals}) + (1 \times \text{number of Tt individuals}) \][/tex]
Substituting the numbers:
[tex]\[ (2 \times 26) + (1 \times 64) = 52 + 64 = 116 \][/tex]
- The number of recessive alleles (t):
[tex]\[ (2 \times \text{number of tt individuals}) + (1 \times \text{number of Tt individuals}) \][/tex]
Substituting the numbers:
[tex]\[ (2 \times 20) + (1 \times 64) = 40 + 64 = 104 \][/tex]
### Step 3: Calculate the frequency of the T allele
- The frequency of an allele is given by the number of copies of that allele divided by the total number of alleles.
Given that the total number of alleles is 220, the frequency of the T allele [tex]\((f(T))\)[/tex] is:
[tex]\[ f(T) = \frac{\text{number of T alleles}}{\text{total number of alleles}} = \frac{116}{220} \][/tex]
### Step 4: Simplify the fraction and round the result
[tex]\[ \frac{116}{220} \approx 0.5272727272727272 \][/tex]
### Conclusion
So, the frequency of the [tex]\( T \)[/tex] allele in the population is approximately [tex]\( 0.53 \)[/tex].
The correct answer is:
[tex]\[ \boxed{0.53} \][/tex]
### Step 1: Identify given information
- The provided table gives us the number of individuals for each genotype.
- Homozygous dominant (TT): 26 individuals
- Heterozygous (Tt): 64 individuals
- Homozygous recessive (tt): 20 individuals
- We are given a hint that there are a total of 220 alleles in the population.
### Step 2: Calculate the number of dominant (T) and recessive (t) alleles
- Each TT individual contributes 2 dominant alleles (T).
- Each Tt individual contributes 1 dominant allele (T) and 1 recessive allele (t).
- Each tt individual contributes 2 recessive alleles (t).
From the information given:
- The number of dominant alleles (T):
[tex]\[ (2 \times \text{number of TT individuals}) + (1 \times \text{number of Tt individuals}) \][/tex]
Substituting the numbers:
[tex]\[ (2 \times 26) + (1 \times 64) = 52 + 64 = 116 \][/tex]
- The number of recessive alleles (t):
[tex]\[ (2 \times \text{number of tt individuals}) + (1 \times \text{number of Tt individuals}) \][/tex]
Substituting the numbers:
[tex]\[ (2 \times 20) + (1 \times 64) = 40 + 64 = 104 \][/tex]
### Step 3: Calculate the frequency of the T allele
- The frequency of an allele is given by the number of copies of that allele divided by the total number of alleles.
Given that the total number of alleles is 220, the frequency of the T allele [tex]\((f(T))\)[/tex] is:
[tex]\[ f(T) = \frac{\text{number of T alleles}}{\text{total number of alleles}} = \frac{116}{220} \][/tex]
### Step 4: Simplify the fraction and round the result
[tex]\[ \frac{116}{220} \approx 0.5272727272727272 \][/tex]
### Conclusion
So, the frequency of the [tex]\( T \)[/tex] allele in the population is approximately [tex]\( 0.53 \)[/tex].
The correct answer is:
[tex]\[ \boxed{0.53} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.