Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which student correctly simplified the expression [tex]\(\frac{4^{10}}{4^5}\)[/tex], let's proceed with the following steps:
1. Understanding the Law of Exponents for Division:
- When we divide two expressions with the same base, we subtract the exponents.
- The general rule is: [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex].
2. Applying the Law of Exponents:
- Given the expression [tex]\(\frac{4^{10}}{4^5}\)[/tex]:
[tex]\[ \frac{4^{10}}{4^5} = 4^{10-5} \][/tex]
3. Simplifying the Expression:
- Subtract the exponents in the numerator and denominator:
[tex]\[ 4^{10-5} = 4^5 \][/tex]
4. Evaluating the Simplified Expression:
- The next step is to compute the value of [tex]\(4^5\)[/tex].
[tex]\[ 4^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024 \][/tex]
By following the correct steps of simplifying the expression using the laws of exponents, we find the simplified expression [tex]\(4^5 = 1024\)[/tex].
5. Identifying the Correct Student:
- Camilla added the exponents: [tex]\(4^{10+5} = 4^{15}\)[/tex] — This is incorrect.
- Bentley divided the exponents: [tex]\(4^{10 \div 5} = 4^2\)[/tex] — This is incorrect.
- Mira multiplied the exponents: [tex]\(4^{10 \cdot 5} = 4^{50}\)[/tex] — This is incorrect.
- Regan subtracted the exponents: [tex]\(4^{10 - 5} = 4^5\)[/tex] — This is correct.
Therefore, the student who correctly simplified the expression [tex]\(\frac{4^{10}}{4^5}\)[/tex] is Regan.
1. Understanding the Law of Exponents for Division:
- When we divide two expressions with the same base, we subtract the exponents.
- The general rule is: [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex].
2. Applying the Law of Exponents:
- Given the expression [tex]\(\frac{4^{10}}{4^5}\)[/tex]:
[tex]\[ \frac{4^{10}}{4^5} = 4^{10-5} \][/tex]
3. Simplifying the Expression:
- Subtract the exponents in the numerator and denominator:
[tex]\[ 4^{10-5} = 4^5 \][/tex]
4. Evaluating the Simplified Expression:
- The next step is to compute the value of [tex]\(4^5\)[/tex].
[tex]\[ 4^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024 \][/tex]
By following the correct steps of simplifying the expression using the laws of exponents, we find the simplified expression [tex]\(4^5 = 1024\)[/tex].
5. Identifying the Correct Student:
- Camilla added the exponents: [tex]\(4^{10+5} = 4^{15}\)[/tex] — This is incorrect.
- Bentley divided the exponents: [tex]\(4^{10 \div 5} = 4^2\)[/tex] — This is incorrect.
- Mira multiplied the exponents: [tex]\(4^{10 \cdot 5} = 4^{50}\)[/tex] — This is incorrect.
- Regan subtracted the exponents: [tex]\(4^{10 - 5} = 4^5\)[/tex] — This is correct.
Therefore, the student who correctly simplified the expression [tex]\(\frac{4^{10}}{4^5}\)[/tex] is Regan.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.