At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve the problem step-by-step.
First, we need to interpret the given expression [tex]\( 10 \times 8^{-2} \)[/tex].
1. Understanding Negative Exponent: The expression [tex]\( 8^{-2} \)[/tex] means [tex]\( \frac{1}{8^2} \)[/tex].
2. Calculating the Positive Exponent: Now, let's find [tex]\( 8^2 \)[/tex]:
[tex]\[ 8^2 = 8 \times 8 = 64 \][/tex]
3. Applying the Negative Exponent: Therefore,
[tex]\[ 8^{-2} = \frac{1}{8^2} = \frac{1}{64} \][/tex]
4. Multiplying by 10: Now multiply this result by 10:
[tex]\[ 10 \times 8^{-2} = 10 \times \frac{1}{64} = \frac{10}{64} \][/tex]
5. Simplifying the Fraction: Finally, we need to simplify the fraction [tex]\( \frac{10}{64} \)[/tex]. To do this, we find the greatest common divisor (GCD) of 10 and 64. We know that the GCD is 2.
Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{10 \div 2}{64 \div 2} = \frac{5}{32} \][/tex]
Therefore, [tex]\( 10 \times 8^{-2} \)[/tex] as a fraction in its simplest form is [tex]\( \frac{5}{32} \)[/tex].
First, we need to interpret the given expression [tex]\( 10 \times 8^{-2} \)[/tex].
1. Understanding Negative Exponent: The expression [tex]\( 8^{-2} \)[/tex] means [tex]\( \frac{1}{8^2} \)[/tex].
2. Calculating the Positive Exponent: Now, let's find [tex]\( 8^2 \)[/tex]:
[tex]\[ 8^2 = 8 \times 8 = 64 \][/tex]
3. Applying the Negative Exponent: Therefore,
[tex]\[ 8^{-2} = \frac{1}{8^2} = \frac{1}{64} \][/tex]
4. Multiplying by 10: Now multiply this result by 10:
[tex]\[ 10 \times 8^{-2} = 10 \times \frac{1}{64} = \frac{10}{64} \][/tex]
5. Simplifying the Fraction: Finally, we need to simplify the fraction [tex]\( \frac{10}{64} \)[/tex]. To do this, we find the greatest common divisor (GCD) of 10 and 64. We know that the GCD is 2.
Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{10 \div 2}{64 \div 2} = \frac{5}{32} \][/tex]
Therefore, [tex]\( 10 \times 8^{-2} \)[/tex] as a fraction in its simplest form is [tex]\( \frac{5}{32} \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.