Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's solve the problem step-by-step.
First, we need to interpret the given expression [tex]\( 10 \times 8^{-2} \)[/tex].
1. Understanding Negative Exponent: The expression [tex]\( 8^{-2} \)[/tex] means [tex]\( \frac{1}{8^2} \)[/tex].
2. Calculating the Positive Exponent: Now, let's find [tex]\( 8^2 \)[/tex]:
[tex]\[ 8^2 = 8 \times 8 = 64 \][/tex]
3. Applying the Negative Exponent: Therefore,
[tex]\[ 8^{-2} = \frac{1}{8^2} = \frac{1}{64} \][/tex]
4. Multiplying by 10: Now multiply this result by 10:
[tex]\[ 10 \times 8^{-2} = 10 \times \frac{1}{64} = \frac{10}{64} \][/tex]
5. Simplifying the Fraction: Finally, we need to simplify the fraction [tex]\( \frac{10}{64} \)[/tex]. To do this, we find the greatest common divisor (GCD) of 10 and 64. We know that the GCD is 2.
Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{10 \div 2}{64 \div 2} = \frac{5}{32} \][/tex]
Therefore, [tex]\( 10 \times 8^{-2} \)[/tex] as a fraction in its simplest form is [tex]\( \frac{5}{32} \)[/tex].
First, we need to interpret the given expression [tex]\( 10 \times 8^{-2} \)[/tex].
1. Understanding Negative Exponent: The expression [tex]\( 8^{-2} \)[/tex] means [tex]\( \frac{1}{8^2} \)[/tex].
2. Calculating the Positive Exponent: Now, let's find [tex]\( 8^2 \)[/tex]:
[tex]\[ 8^2 = 8 \times 8 = 64 \][/tex]
3. Applying the Negative Exponent: Therefore,
[tex]\[ 8^{-2} = \frac{1}{8^2} = \frac{1}{64} \][/tex]
4. Multiplying by 10: Now multiply this result by 10:
[tex]\[ 10 \times 8^{-2} = 10 \times \frac{1}{64} = \frac{10}{64} \][/tex]
5. Simplifying the Fraction: Finally, we need to simplify the fraction [tex]\( \frac{10}{64} \)[/tex]. To do this, we find the greatest common divisor (GCD) of 10 and 64. We know that the GCD is 2.
Divide the numerator and the denominator by their GCD:
[tex]\[ \frac{10 \div 2}{64 \div 2} = \frac{5}{32} \][/tex]
Therefore, [tex]\( 10 \times 8^{-2} \)[/tex] as a fraction in its simplest form is [tex]\( \frac{5}{32} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.