At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the given quadratic equation [tex]\(x^2 + 8x - 9 = 0\)[/tex] using the quadratic formula, we can follow these detailed steps:
1. Identify the coefficients:
- [tex]\(a = 1\)[/tex] (coefficient of [tex]\(x^2\)[/tex])
- [tex]\(b = 8\)[/tex] (coefficient of [tex]\(x\)[/tex])
- [tex]\(c = -9\)[/tex] (constant term)
2. Write the quadratic formula:
The quadratic formula is [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex].
3. Substitute the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ x = \frac{-(8) \pm \sqrt{8^2 - 4(1)(-9)}}{2(1)} \][/tex]
4. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 8^2 - 4(1)(-9) = 64 + 36 = 100 \][/tex]
5. Calculate the square root of the discriminant:
[tex]\[ \sqrt{100} = 10 \][/tex]
6. Substitute back into the quadratic formula and solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{-8 \pm 10}{2} \][/tex]
7. Find the two possible solutions:
- For [tex]\(x_1\)[/tex]:
[tex]\[ x_1 = \frac{-8 + 10}{2} = \frac{2}{2} = 1 \][/tex]
- For [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = \frac{-8 - 10}{2} = \frac{-18}{2} = -9 \][/tex]
So the correct solutions should be [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Now, let's examine Soren's steps to identify the error:
- Step 1: [tex]\(x = \frac{-8 \pm \sqrt{64 + 36}}{2}\)[/tex]
This step is correct, as we calculated the discriminant correctly (64 + 36 = 100).
- Step 2: [tex]\(x = \frac{-8 \pm \sqrt{100}}{2}\)[/tex]
This step is also correct, as [tex]\(\sqrt{100} = 10\)[/tex].
- Step 3: [tex]\(x = \{-18, 2\}\)[/tex]
Here is where Soren made an error. The correct computation using the formula should result in the solutions [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Therefore, the error was made in Step 3. Soren did not properly solve the final expressions resulting from [tex]\(\frac{-8 \pm 10}{2}\)[/tex]. The correct results should have been [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
1. Identify the coefficients:
- [tex]\(a = 1\)[/tex] (coefficient of [tex]\(x^2\)[/tex])
- [tex]\(b = 8\)[/tex] (coefficient of [tex]\(x\)[/tex])
- [tex]\(c = -9\)[/tex] (constant term)
2. Write the quadratic formula:
The quadratic formula is [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex].
3. Substitute the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ x = \frac{-(8) \pm \sqrt{8^2 - 4(1)(-9)}}{2(1)} \][/tex]
4. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 8^2 - 4(1)(-9) = 64 + 36 = 100 \][/tex]
5. Calculate the square root of the discriminant:
[tex]\[ \sqrt{100} = 10 \][/tex]
6. Substitute back into the quadratic formula and solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{-8 \pm 10}{2} \][/tex]
7. Find the two possible solutions:
- For [tex]\(x_1\)[/tex]:
[tex]\[ x_1 = \frac{-8 + 10}{2} = \frac{2}{2} = 1 \][/tex]
- For [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = \frac{-8 - 10}{2} = \frac{-18}{2} = -9 \][/tex]
So the correct solutions should be [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Now, let's examine Soren's steps to identify the error:
- Step 1: [tex]\(x = \frac{-8 \pm \sqrt{64 + 36}}{2}\)[/tex]
This step is correct, as we calculated the discriminant correctly (64 + 36 = 100).
- Step 2: [tex]\(x = \frac{-8 \pm \sqrt{100}}{2}\)[/tex]
This step is also correct, as [tex]\(\sqrt{100} = 10\)[/tex].
- Step 3: [tex]\(x = \{-18, 2\}\)[/tex]
Here is where Soren made an error. The correct computation using the formula should result in the solutions [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Therefore, the error was made in Step 3. Soren did not properly solve the final expressions resulting from [tex]\(\frac{-8 \pm 10}{2}\)[/tex]. The correct results should have been [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.