Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! To find the final velocity of the two model cars after a perfectly inelastic collision, we can use the principle of conservation of momentum. Here's the step-by-step solution:
1. Define the variables and given data:
- Mass of Car 1, [tex]\( m_1 = 2.0 \text{ kg} \)[/tex]
- Initial velocity of Car 1, [tex]\( v_{1i} = 2 \, \text{m/s} \)[/tex]
- Mass of Car 2, [tex]\( m_2 = 1.0 \text{ kg} \)[/tex]
- Initial velocity of Car 2, [tex]\( v_{2i} = -3 \, \text{m/s} \)[/tex]
2. Understand that after a perfectly inelastic collision, the two cars stick together and move with the same final velocity, [tex]\( v_f \)[/tex].
3. Apply the conservation of momentum:
- The total initial momentum of the system is given by the sum of the momenta of both cars before the collision.
[tex]\[ p_{\text{initial}} = (m_1 \cdot v_{1i}) + (m_2 \cdot v_{2i}) \][/tex]
4. Plug in the given values:
[tex]\[ p_{\text{initial}} = (2.0 \, \text{kg} \cdot 2 \, \frac{\text{m}}{\text{s}}) + (1.0 \, \text{kg} \cdot (-3) \, \frac{\text{m}}{\text{s}}) \][/tex]
5. Calculate the total initial momentum:
[tex]\[ p_{\text{initial}} = (4 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}) + (-3 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}) = 1 \, \text{kg} \cdot \frac{\text{m}}{\text{s}} \][/tex]
6. Combine the masses after the collision since they stick together:
[tex]\[ m_{\text{combined}} = m_1 + m_2 = 2.0 \, \text{kg} + 1.0 \, \text{kg} = 3.0 \, \text{kg} \][/tex]
7. Set up the momentum conservation equation:
[tex]\[ p_{\text{initial}} = p_{\text{final}} \][/tex]
[tex]\[ 1 \, \text{kg} \cdot \frac{\text{m}}{\text{s}} = (m_{\text{combined}} \cdot v_f) \][/tex]
[tex]\[ 1 \, \text{kg} \cdot \frac{\text{m}}{\text{s}} = (3.0 \, \text{kg} \cdot v_f) \][/tex]
8. Solve for the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \frac{1 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}}{3.0 \, \text{kg}} = 0.3333333333333333 \, \frac{\text{m}}{\text{s}} \][/tex]
9. Conclusion:
The final velocity immediately after the collision is [tex]\( 0.333 \, \frac{\text{m}}{\text{s}} \)[/tex].
So, the two cars, after colliding and sticking together, will move with a final velocity of approximately [tex]\( 0.333 \, \frac{\text{m}}{\text{s}} \)[/tex].
1. Define the variables and given data:
- Mass of Car 1, [tex]\( m_1 = 2.0 \text{ kg} \)[/tex]
- Initial velocity of Car 1, [tex]\( v_{1i} = 2 \, \text{m/s} \)[/tex]
- Mass of Car 2, [tex]\( m_2 = 1.0 \text{ kg} \)[/tex]
- Initial velocity of Car 2, [tex]\( v_{2i} = -3 \, \text{m/s} \)[/tex]
2. Understand that after a perfectly inelastic collision, the two cars stick together and move with the same final velocity, [tex]\( v_f \)[/tex].
3. Apply the conservation of momentum:
- The total initial momentum of the system is given by the sum of the momenta of both cars before the collision.
[tex]\[ p_{\text{initial}} = (m_1 \cdot v_{1i}) + (m_2 \cdot v_{2i}) \][/tex]
4. Plug in the given values:
[tex]\[ p_{\text{initial}} = (2.0 \, \text{kg} \cdot 2 \, \frac{\text{m}}{\text{s}}) + (1.0 \, \text{kg} \cdot (-3) \, \frac{\text{m}}{\text{s}}) \][/tex]
5. Calculate the total initial momentum:
[tex]\[ p_{\text{initial}} = (4 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}) + (-3 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}) = 1 \, \text{kg} \cdot \frac{\text{m}}{\text{s}} \][/tex]
6. Combine the masses after the collision since they stick together:
[tex]\[ m_{\text{combined}} = m_1 + m_2 = 2.0 \, \text{kg} + 1.0 \, \text{kg} = 3.0 \, \text{kg} \][/tex]
7. Set up the momentum conservation equation:
[tex]\[ p_{\text{initial}} = p_{\text{final}} \][/tex]
[tex]\[ 1 \, \text{kg} \cdot \frac{\text{m}}{\text{s}} = (m_{\text{combined}} \cdot v_f) \][/tex]
[tex]\[ 1 \, \text{kg} \cdot \frac{\text{m}}{\text{s}} = (3.0 \, \text{kg} \cdot v_f) \][/tex]
8. Solve for the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \frac{1 \, \text{kg} \cdot \frac{\text{m}}{\text{s}}}{3.0 \, \text{kg}} = 0.3333333333333333 \, \frac{\text{m}}{\text{s}} \][/tex]
9. Conclusion:
The final velocity immediately after the collision is [tex]\( 0.333 \, \frac{\text{m}}{\text{s}} \)[/tex].
So, the two cars, after colliding and sticking together, will move with a final velocity of approximately [tex]\( 0.333 \, \frac{\text{m}}{\text{s}} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.