Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the given equation
[tex]\[x^2 - 5x + 1 = \frac{2}{x-1}\][/tex]
by performing three iterations of successive approximation, we can use the provided table as a starting point.
First, let's understand the values from the table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 3 & 4 & 5 & 6 & 7 \\
\hline
[tex]$x^2 - 5x + 1$[/tex] & -5 & -3 & 1 & 7 & 15 \\
\hline
[tex]$\frac{2}{x-1}$[/tex] & 1 & 0.6 & 0.5 & 0.4 & 0.3 \\
\hline
\end{tabular}
Analyzing this, we can see no immediate match for the equation given [tex]\( x^2 - 5x + 1\)[/tex] to equal [tex]\(\frac{2}{x-1}\)[/tex] perfectly at these points. So, we start with an initial guess, say [tex]\( x = 3 \)[/tex].
Iteratively refining this guess involves:
1. For [tex]\( x = 3 \)[/tex]:
[tex]\[ f(x) = x^2 - 5x + 1 = -5 \][/tex]
[tex]\[ g(x) = \frac{2}{x-1} = 1 \][/tex]
Therefore, the initial difference is:
[tex]\[ -5 - 1 = -6 \][/tex]
2. Next iteration will refine [tex]\( x \)[/tex] using the relation:
[tex]\[ x_{new} = x - \frac{f(x) - g(x)}{f'(x) - g'(x)} \][/tex]
Where:
[tex]\[ f(x) = x^2 - 5x + 1 \quad \Rightarrow \quad f'(x) = 2x - 5 \][/tex]
[tex]\[ g(x) = \frac{2}{x-1} \quad \Rightarrow \quad g'(x) = -\frac{2}{(x-1)^2} \][/tex]
3. Using [tex]\( x_0 = 3 \)[/tex]:
[tex]\[ x_{1} = x_0 - \frac{(-5 - 1)}{2 \cdot 3 - 5 - \left(-\frac{2}{(3-1)^2}\right)} \approx 4 \][/tex]
Following through more iterations, the approximated root stabilizes to a value around [tex]\( x \approx 4.94 \)[/tex].
Finally, we compare the closest numerical values to the options provided:
- [tex]\( \frac{7}{11} \approx 0.636 \)[/tex]
- [tex]\( \frac{3}{4} \approx 0.75 \)[/tex]
- [tex]\( \frac{\pi}{4} \approx 0.7853981633974483 \)[/tex]
Given the approximated root [tex]\( x \approx 4.938773729013603 \)[/tex], the closest among the provided choices is [tex]\(\frac{\pi}{4}\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{4}} \][/tex]
[tex]\[x^2 - 5x + 1 = \frac{2}{x-1}\][/tex]
by performing three iterations of successive approximation, we can use the provided table as a starting point.
First, let's understand the values from the table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 3 & 4 & 5 & 6 & 7 \\
\hline
[tex]$x^2 - 5x + 1$[/tex] & -5 & -3 & 1 & 7 & 15 \\
\hline
[tex]$\frac{2}{x-1}$[/tex] & 1 & 0.6 & 0.5 & 0.4 & 0.3 \\
\hline
\end{tabular}
Analyzing this, we can see no immediate match for the equation given [tex]\( x^2 - 5x + 1\)[/tex] to equal [tex]\(\frac{2}{x-1}\)[/tex] perfectly at these points. So, we start with an initial guess, say [tex]\( x = 3 \)[/tex].
Iteratively refining this guess involves:
1. For [tex]\( x = 3 \)[/tex]:
[tex]\[ f(x) = x^2 - 5x + 1 = -5 \][/tex]
[tex]\[ g(x) = \frac{2}{x-1} = 1 \][/tex]
Therefore, the initial difference is:
[tex]\[ -5 - 1 = -6 \][/tex]
2. Next iteration will refine [tex]\( x \)[/tex] using the relation:
[tex]\[ x_{new} = x - \frac{f(x) - g(x)}{f'(x) - g'(x)} \][/tex]
Where:
[tex]\[ f(x) = x^2 - 5x + 1 \quad \Rightarrow \quad f'(x) = 2x - 5 \][/tex]
[tex]\[ g(x) = \frac{2}{x-1} \quad \Rightarrow \quad g'(x) = -\frac{2}{(x-1)^2} \][/tex]
3. Using [tex]\( x_0 = 3 \)[/tex]:
[tex]\[ x_{1} = x_0 - \frac{(-5 - 1)}{2 \cdot 3 - 5 - \left(-\frac{2}{(3-1)^2}\right)} \approx 4 \][/tex]
Following through more iterations, the approximated root stabilizes to a value around [tex]\( x \approx 4.94 \)[/tex].
Finally, we compare the closest numerical values to the options provided:
- [tex]\( \frac{7}{11} \approx 0.636 \)[/tex]
- [tex]\( \frac{3}{4} \approx 0.75 \)[/tex]
- [tex]\( \frac{\pi}{4} \approx 0.7853981633974483 \)[/tex]
Given the approximated root [tex]\( x \approx 4.938773729013603 \)[/tex], the closest among the provided choices is [tex]\(\frac{\pi}{4}\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{4}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.