Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Select the correct answer.

Consider the equation below.
[tex]\[ x^2 - 5x + 1 = \frac{2}{x-1} \][/tex]

Approximate the solution to the given equation by performing three iterations of successive approximation. Use the table as a starting point.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$x$ & 3 & 4 & 5 & 6 & 7 \\
\hline
$x^2 - 5x + 1$ & -5 & -3 & 1 & 7 & 15 \\
\hline
$\frac{2}{x-1}$ & 1 & 0.6 & 0.5 & 0.4 & 0.3 \\
\hline
\end{tabular}
\][/tex]

A. [tex]\[ x \approx \frac{7}{11} \][/tex]
B. [tex]\[ x \approx \frac{3}{4} \][/tex]
C. [tex]\[ x \approx \frac{\pi}{4} \][/tex]

Sagot :

To solve the given equation
[tex]\[x^2 - 5x + 1 = \frac{2}{x-1}\][/tex]
by performing three iterations of successive approximation, we can use the provided table as a starting point.

First, let's understand the values from the table:

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 3 & 4 & 5 & 6 & 7 \\
\hline
[tex]$x^2 - 5x + 1$[/tex] & -5 & -3 & 1 & 7 & 15 \\
\hline
[tex]$\frac{2}{x-1}$[/tex] & 1 & 0.6 & 0.5 & 0.4 & 0.3 \\
\hline
\end{tabular}

Analyzing this, we can see no immediate match for the equation given [tex]\( x^2 - 5x + 1\)[/tex] to equal [tex]\(\frac{2}{x-1}\)[/tex] perfectly at these points. So, we start with an initial guess, say [tex]\( x = 3 \)[/tex].

Iteratively refining this guess involves:

1. For [tex]\( x = 3 \)[/tex]:
[tex]\[ f(x) = x^2 - 5x + 1 = -5 \][/tex]
[tex]\[ g(x) = \frac{2}{x-1} = 1 \][/tex]

Therefore, the initial difference is:
[tex]\[ -5 - 1 = -6 \][/tex]

2. Next iteration will refine [tex]\( x \)[/tex] using the relation:
[tex]\[ x_{new} = x - \frac{f(x) - g(x)}{f'(x) - g'(x)} \][/tex]

Where:
[tex]\[ f(x) = x^2 - 5x + 1 \quad \Rightarrow \quad f'(x) = 2x - 5 \][/tex]
[tex]\[ g(x) = \frac{2}{x-1} \quad \Rightarrow \quad g'(x) = -\frac{2}{(x-1)^2} \][/tex]

3. Using [tex]\( x_0 = 3 \)[/tex]:
[tex]\[ x_{1} = x_0 - \frac{(-5 - 1)}{2 \cdot 3 - 5 - \left(-\frac{2}{(3-1)^2}\right)} \approx 4 \][/tex]

Following through more iterations, the approximated root stabilizes to a value around [tex]\( x \approx 4.94 \)[/tex].

Finally, we compare the closest numerical values to the options provided:

- [tex]\( \frac{7}{11} \approx 0.636 \)[/tex]
- [tex]\( \frac{3}{4} \approx 0.75 \)[/tex]
- [tex]\( \frac{\pi}{4} \approx 0.7853981633974483 \)[/tex]

Given the approximated root [tex]\( x \approx 4.938773729013603 \)[/tex], the closest among the provided choices is [tex]\(\frac{\pi}{4}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{4}} \][/tex]