At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Select the correct answer.

Consider the equation below.
[tex]\[ x^2 - 5x + 1 = \frac{2}{x-1} \][/tex]

Approximate the solution to the given equation by performing three iterations of successive approximation. Use the table as a starting point.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$x$ & 3 & 4 & 5 & 6 & 7 \\
\hline
$x^2 - 5x + 1$ & -5 & -3 & 1 & 7 & 15 \\
\hline
$\frac{2}{x-1}$ & 1 & 0.6 & 0.5 & 0.4 & 0.3 \\
\hline
\end{tabular}
\][/tex]

A. [tex]\[ x \approx \frac{7}{11} \][/tex]
B. [tex]\[ x \approx \frac{3}{4} \][/tex]
C. [tex]\[ x \approx \frac{\pi}{4} \][/tex]


Sagot :

To solve the given equation
[tex]\[x^2 - 5x + 1 = \frac{2}{x-1}\][/tex]
by performing three iterations of successive approximation, we can use the provided table as a starting point.

First, let's understand the values from the table:

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 3 & 4 & 5 & 6 & 7 \\
\hline
[tex]$x^2 - 5x + 1$[/tex] & -5 & -3 & 1 & 7 & 15 \\
\hline
[tex]$\frac{2}{x-1}$[/tex] & 1 & 0.6 & 0.5 & 0.4 & 0.3 \\
\hline
\end{tabular}

Analyzing this, we can see no immediate match for the equation given [tex]\( x^2 - 5x + 1\)[/tex] to equal [tex]\(\frac{2}{x-1}\)[/tex] perfectly at these points. So, we start with an initial guess, say [tex]\( x = 3 \)[/tex].

Iteratively refining this guess involves:

1. For [tex]\( x = 3 \)[/tex]:
[tex]\[ f(x) = x^2 - 5x + 1 = -5 \][/tex]
[tex]\[ g(x) = \frac{2}{x-1} = 1 \][/tex]

Therefore, the initial difference is:
[tex]\[ -5 - 1 = -6 \][/tex]

2. Next iteration will refine [tex]\( x \)[/tex] using the relation:
[tex]\[ x_{new} = x - \frac{f(x) - g(x)}{f'(x) - g'(x)} \][/tex]

Where:
[tex]\[ f(x) = x^2 - 5x + 1 \quad \Rightarrow \quad f'(x) = 2x - 5 \][/tex]
[tex]\[ g(x) = \frac{2}{x-1} \quad \Rightarrow \quad g'(x) = -\frac{2}{(x-1)^2} \][/tex]

3. Using [tex]\( x_0 = 3 \)[/tex]:
[tex]\[ x_{1} = x_0 - \frac{(-5 - 1)}{2 \cdot 3 - 5 - \left(-\frac{2}{(3-1)^2}\right)} \approx 4 \][/tex]

Following through more iterations, the approximated root stabilizes to a value around [tex]\( x \approx 4.94 \)[/tex].

Finally, we compare the closest numerical values to the options provided:

- [tex]\( \frac{7}{11} \approx 0.636 \)[/tex]
- [tex]\( \frac{3}{4} \approx 0.75 \)[/tex]
- [tex]\( \frac{\pi}{4} \approx 0.7853981633974483 \)[/tex]

Given the approximated root [tex]\( x \approx 4.938773729013603 \)[/tex], the closest among the provided choices is [tex]\(\frac{\pi}{4}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{4}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.