Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's break down the translation rule [tex]\( T_{-8,4}(x, y) \)[/tex].
Translation [tex]\( T_{a, b}(x, y) \)[/tex] means that the point [tex]\((x, y)\)[/tex] is translated by moving it [tex]\(a\)[/tex] units horizontally and [tex]\(b\)[/tex] units vertically.
For the translation [tex]\( T_{-8,4}(x, y) \)[/tex]:
1. The [tex]\( -8 \)[/tex] indicates that we move 8 units to the left along the x-axis.
2. The [tex]\( 4 \)[/tex] indicates that we move 4 units up along the y-axis.
To write this rule as an expression, we need to adjust the x and y coordinates accordingly:
- Subtract 8 from the x-coordinate: [tex]\( x \rightarrow x - 8 \)[/tex]
- Add 4 to the y-coordinate: [tex]\( y \rightarrow y + 4 \)[/tex]
Combining these, the rule can be written as:
[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]
Therefore, the correct option that describes this translation is:
[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]
This matches the third option in the list given above. So, the correct answer is:
[tex]\[ \boxed{(x-8, y+4)} \][/tex]
Translation [tex]\( T_{a, b}(x, y) \)[/tex] means that the point [tex]\((x, y)\)[/tex] is translated by moving it [tex]\(a\)[/tex] units horizontally and [tex]\(b\)[/tex] units vertically.
For the translation [tex]\( T_{-8,4}(x, y) \)[/tex]:
1. The [tex]\( -8 \)[/tex] indicates that we move 8 units to the left along the x-axis.
2. The [tex]\( 4 \)[/tex] indicates that we move 4 units up along the y-axis.
To write this rule as an expression, we need to adjust the x and y coordinates accordingly:
- Subtract 8 from the x-coordinate: [tex]\( x \rightarrow x - 8 \)[/tex]
- Add 4 to the y-coordinate: [tex]\( y \rightarrow y + 4 \)[/tex]
Combining these, the rule can be written as:
[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]
Therefore, the correct option that describes this translation is:
[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]
This matches the third option in the list given above. So, the correct answer is:
[tex]\[ \boxed{(x-8, y+4)} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.