Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Of course! Let's solve this problem step by step.
### a. Write a system of equations to represent each student's comment.
First, we need to define our variables:
- Let [tex]\( x \)[/tex] be the number of points Elena scored.
- Let [tex]\( y \)[/tex] be the number of points Kiran scored.
Now, according to Elena's comment: "You (Kiran) earned twice mine!"
This can be translated into the equation:
[tex]\[ y = 2x \][/tex]
According to Kiran's comment: "I only scored 9 points higher than you did."
This can be written as:
[tex]\[ y = x + 9 \][/tex]
So, the system of equations representing the comments is:
1. [tex]\( y = 2x \)[/tex]
2. [tex]\( y = x + 9 \)[/tex]
### b. If both students were correct, how many points did each student score? Show your reasoning.
We have the system of equations:
[tex]\[ y = 2x \][/tex]
[tex]\[ y = x + 9 \][/tex]
Since both equations equal [tex]\( y \)[/tex], we can set them equal to each other:
[tex]\[ 2x = x + 9 \][/tex]
Now, solve for [tex]\( x \)[/tex]:
Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 2x - x = x + 9 - x \][/tex]
[tex]\[ x = 9 \][/tex]
So, Elena scored 9 points. Now, substitute [tex]\( x = 9 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]. We'll use [tex]\( y = 2x \)[/tex]:
[tex]\[ y = 2(9) \][/tex]
[tex]\[ y = 18 \][/tex]
Thus, Kiran scored 18 points.
In conclusion:
- Elena scored 9 points.
- Kiran scored 18 points.
### a. Write a system of equations to represent each student's comment.
First, we need to define our variables:
- Let [tex]\( x \)[/tex] be the number of points Elena scored.
- Let [tex]\( y \)[/tex] be the number of points Kiran scored.
Now, according to Elena's comment: "You (Kiran) earned twice mine!"
This can be translated into the equation:
[tex]\[ y = 2x \][/tex]
According to Kiran's comment: "I only scored 9 points higher than you did."
This can be written as:
[tex]\[ y = x + 9 \][/tex]
So, the system of equations representing the comments is:
1. [tex]\( y = 2x \)[/tex]
2. [tex]\( y = x + 9 \)[/tex]
### b. If both students were correct, how many points did each student score? Show your reasoning.
We have the system of equations:
[tex]\[ y = 2x \][/tex]
[tex]\[ y = x + 9 \][/tex]
Since both equations equal [tex]\( y \)[/tex], we can set them equal to each other:
[tex]\[ 2x = x + 9 \][/tex]
Now, solve for [tex]\( x \)[/tex]:
Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 2x - x = x + 9 - x \][/tex]
[tex]\[ x = 9 \][/tex]
So, Elena scored 9 points. Now, substitute [tex]\( x = 9 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]. We'll use [tex]\( y = 2x \)[/tex]:
[tex]\[ y = 2(9) \][/tex]
[tex]\[ y = 18 \][/tex]
Thus, Kiran scored 18 points.
In conclusion:
- Elena scored 9 points.
- Kiran scored 18 points.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.