Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the real zeros of the polynomial function
[tex]\[ f(x) = x^3 + 2x^2 - 9x - 18 \][/tex]
we need to find the values of [tex]\( x \)[/tex] such that [tex]\( f(x) = 0 \)[/tex]. Here's a step-by-step process to find these real zeros:
1. Setting the Polynomial to Zero:
[tex]\[ x^3 + 2x^2 - 9x - 18 = 0 \][/tex]
2. Solution Analysis:
The result from solving the equation [tex]\( x^3 + 2x^2 - 9x - 18 = 0 \)[/tex] are the values of [tex]\( x \)[/tex] that satisfy the equation. These values are the real zeros of the polynomial.
3. Given Real Zeros:
From our calculations, the real zeros of the polynomial are:
[tex]\[ x = -3, x = -2, \text{ and } x = 3 \][/tex]
4. Verification of Choices:
Now we compare these real zeros with the choices provided:
- A. [tex]\(1,\, 2,\, 3\)[/tex]
- B. [tex]\(3,\, -3,\, 2\)[/tex]
- C. [tex]\(2,\, 3,\, -6\)[/tex]
- D. [tex]\(1,\, -1,\, 18\)[/tex]
- E. [tex]\(-2,\, 3,\, -3\)[/tex]
5. Comparison Results:
- Choice A: does not contain [tex]\(-3\)[/tex] or [tex]\(-2\)[/tex].
- Choice B: contains [tex]\(3\)[/tex] and [tex]\(-3\)[/tex] but not [tex]\(-2\)[/tex].
- Choice C: contains [tex]\(3\)[/tex] but does not contain [tex]\(-3\)[/tex] or [tex]\(-2\)[/tex].
- Choice D: does not contain [tex]\(-3\)[/tex], [tex]\(-2\)[/tex], or [tex]\(3\)[/tex].
- Choice E: contains all the correct numbers [tex]\(-2, 3,\)[/tex] and [tex]\(-3\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{-2,\, 3,\, -3} \][/tex]
Hence, the real zeros of the given polynomial function are provided in option E.
[tex]\[ f(x) = x^3 + 2x^2 - 9x - 18 \][/tex]
we need to find the values of [tex]\( x \)[/tex] such that [tex]\( f(x) = 0 \)[/tex]. Here's a step-by-step process to find these real zeros:
1. Setting the Polynomial to Zero:
[tex]\[ x^3 + 2x^2 - 9x - 18 = 0 \][/tex]
2. Solution Analysis:
The result from solving the equation [tex]\( x^3 + 2x^2 - 9x - 18 = 0 \)[/tex] are the values of [tex]\( x \)[/tex] that satisfy the equation. These values are the real zeros of the polynomial.
3. Given Real Zeros:
From our calculations, the real zeros of the polynomial are:
[tex]\[ x = -3, x = -2, \text{ and } x = 3 \][/tex]
4. Verification of Choices:
Now we compare these real zeros with the choices provided:
- A. [tex]\(1,\, 2,\, 3\)[/tex]
- B. [tex]\(3,\, -3,\, 2\)[/tex]
- C. [tex]\(2,\, 3,\, -6\)[/tex]
- D. [tex]\(1,\, -1,\, 18\)[/tex]
- E. [tex]\(-2,\, 3,\, -3\)[/tex]
5. Comparison Results:
- Choice A: does not contain [tex]\(-3\)[/tex] or [tex]\(-2\)[/tex].
- Choice B: contains [tex]\(3\)[/tex] and [tex]\(-3\)[/tex] but not [tex]\(-2\)[/tex].
- Choice C: contains [tex]\(3\)[/tex] but does not contain [tex]\(-3\)[/tex] or [tex]\(-2\)[/tex].
- Choice D: does not contain [tex]\(-3\)[/tex], [tex]\(-2\)[/tex], or [tex]\(3\)[/tex].
- Choice E: contains all the correct numbers [tex]\(-2, 3,\)[/tex] and [tex]\(-3\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{-2,\, 3,\, -3} \][/tex]
Hence, the real zeros of the given polynomial function are provided in option E.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.