Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether the relation shown in the table is a function, let's graph the points and examine the behavior of vertical lines passing through these points.
Here are the points given:
[tex]\[ \begin{array}{|r|r|} \hline x & y \\ \hline -1 & 3 \\ \hline -1 & 2 \\ \hline 0 & -4 \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
We can plot these points on a Cartesian plane.
1. Point (-1, 3): Located at [tex]\( x = -1 \)[/tex] and [tex]\( y = 3 \)[/tex].
2. Point (-1, 2): Located at [tex]\( x = -1 \)[/tex] and [tex]\( y = 2 \)[/tex].
3. Point (0, -4): Located at [tex]\( x = 0 \)[/tex] and [tex]\( y = -4 \)[/tex].
4. Point (4, 2): Located at [tex]\( x = 4 \)[/tex] and [tex]\( y = 2 \)[/tex].
Next, let's analyze these points:
- Vertical Line Test: For the relation to be a function, no vertical line should intersect the graph at more than one point.
Let’s now determine if any vertical line intersects more than one of these points:
- A vertical line at [tex]\( x = -1 \)[/tex] will pass through both (-1, 3) and (-1, 2).
Since the vertical line at [tex]\( x = -1 \)[/tex] intersects more than one point, the relation is not a function.
Therefore, the correct answer is:
- No; a vertical line passes through two graphed points.
Here are the points given:
[tex]\[ \begin{array}{|r|r|} \hline x & y \\ \hline -1 & 3 \\ \hline -1 & 2 \\ \hline 0 & -4 \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
We can plot these points on a Cartesian plane.
1. Point (-1, 3): Located at [tex]\( x = -1 \)[/tex] and [tex]\( y = 3 \)[/tex].
2. Point (-1, 2): Located at [tex]\( x = -1 \)[/tex] and [tex]\( y = 2 \)[/tex].
3. Point (0, -4): Located at [tex]\( x = 0 \)[/tex] and [tex]\( y = -4 \)[/tex].
4. Point (4, 2): Located at [tex]\( x = 4 \)[/tex] and [tex]\( y = 2 \)[/tex].
Next, let's analyze these points:
- Vertical Line Test: For the relation to be a function, no vertical line should intersect the graph at more than one point.
Let’s now determine if any vertical line intersects more than one of these points:
- A vertical line at [tex]\( x = -1 \)[/tex] will pass through both (-1, 3) and (-1, 2).
Since the vertical line at [tex]\( x = -1 \)[/tex] intersects more than one point, the relation is not a function.
Therefore, the correct answer is:
- No; a vertical line passes through two graphed points.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.