Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the correctness of Carla's system of inequalities, let's analyze each part of the given situation and the inequalities step-by-step:
### Problem Breakdown
1. Volume of a Rectangular Prism:
- The volume [tex]\(V\)[/tex] of a rectangular prism is given by the product of its width [tex]\(w\)[/tex], height [tex]\(h\)[/tex], and length [tex]\(l\)[/tex].
- Volume formula: [tex]\( V = w \times h \times l \)[/tex].
2. Given Conditions:
- Minimum volume [tex]\( V \geq 25 \)[/tex] cubic feet.
- Height [tex]\( h = w + 3 \)[/tex] (since the height is 3 feet more than the width).
- Length [tex]\( l > w \)[/tex] (length is greater than the width).
### Carla's Inequalities
Carla proposed the following system of inequalities:
[tex]\[ \begin{array}{l} V < w^3 + 8 w^2 + 15 w \\ V \geq 25 \end{array} \][/tex]
### Analyzing Inequalities
1. First Inequality:
[tex]\[ V < w^3 + 8 w^2 + 15 w \][/tex]
- To verify if this inequality correctly represents the volume, let's consider a plausible volume expression.
- We know:
- Height [tex]\( h = w + 3 \)[/tex].
- Assume length as a function of width, e.g., [tex]\( l = w + k \)[/tex] where [tex]\( k > 0 \)[/tex].
- A possible volume expression for the given problem might be [tex]\( V = w \times (w + 3) \times (w + k) \)[/tex].
2. Second Inequality:
[tex]\[ V \geq 25 \][/tex]
- This clearly states the volume should be at least 25 cubic feet, which seems to match the given problem conditions without any ambiguities.
### Correctness of Carla's Inequalities
1. First Inequality Evaluation:
- The expression [tex]\( w^3 + 8w^2 + 15w \)[/tex]:
- Factoring and comparison with a sample volume expression, it appears to be consistent with reasonable volume expectations for a range of [tex]\(w\)[/tex].
- However, given that it matches the plausible functional behavior for a range of [tex]\(w\)[/tex], it seems appropriate.
2. Second Inequality Evaluation:
- [tex]\( V \geq 25 \)[/tex] is directly aligned with the problem statement.
### Conclusion
After reviewing the given conditions and Carla's inequalities:
- A: Incorrect, the volume expression seems aligned.
- B: Correct, the inequalities properly represent the volume constraints and minimum condition.
- C: Incorrect, the second inequality correctly ensures the minimum volume.
- D: Incorrect, the first inequality has the correct symbol comparing volume expressions.
Therefore, the correct statement is:
B. Carla wrote the system correctly.
### Problem Breakdown
1. Volume of a Rectangular Prism:
- The volume [tex]\(V\)[/tex] of a rectangular prism is given by the product of its width [tex]\(w\)[/tex], height [tex]\(h\)[/tex], and length [tex]\(l\)[/tex].
- Volume formula: [tex]\( V = w \times h \times l \)[/tex].
2. Given Conditions:
- Minimum volume [tex]\( V \geq 25 \)[/tex] cubic feet.
- Height [tex]\( h = w + 3 \)[/tex] (since the height is 3 feet more than the width).
- Length [tex]\( l > w \)[/tex] (length is greater than the width).
### Carla's Inequalities
Carla proposed the following system of inequalities:
[tex]\[ \begin{array}{l} V < w^3 + 8 w^2 + 15 w \\ V \geq 25 \end{array} \][/tex]
### Analyzing Inequalities
1. First Inequality:
[tex]\[ V < w^3 + 8 w^2 + 15 w \][/tex]
- To verify if this inequality correctly represents the volume, let's consider a plausible volume expression.
- We know:
- Height [tex]\( h = w + 3 \)[/tex].
- Assume length as a function of width, e.g., [tex]\( l = w + k \)[/tex] where [tex]\( k > 0 \)[/tex].
- A possible volume expression for the given problem might be [tex]\( V = w \times (w + 3) \times (w + k) \)[/tex].
2. Second Inequality:
[tex]\[ V \geq 25 \][/tex]
- This clearly states the volume should be at least 25 cubic feet, which seems to match the given problem conditions without any ambiguities.
### Correctness of Carla's Inequalities
1. First Inequality Evaluation:
- The expression [tex]\( w^3 + 8w^2 + 15w \)[/tex]:
- Factoring and comparison with a sample volume expression, it appears to be consistent with reasonable volume expectations for a range of [tex]\(w\)[/tex].
- However, given that it matches the plausible functional behavior for a range of [tex]\(w\)[/tex], it seems appropriate.
2. Second Inequality Evaluation:
- [tex]\( V \geq 25 \)[/tex] is directly aligned with the problem statement.
### Conclusion
After reviewing the given conditions and Carla's inequalities:
- A: Incorrect, the volume expression seems aligned.
- B: Correct, the inequalities properly represent the volume constraints and minimum condition.
- C: Incorrect, the second inequality correctly ensures the minimum volume.
- D: Incorrect, the first inequality has the correct symbol comparing volume expressions.
Therefore, the correct statement is:
B. Carla wrote the system correctly.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.