Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which electromagnetic wave has the least amount of energy, we need to use the relationship between the energy of a wave ([tex]\(E\)[/tex]) and its wavelength ([tex]\(\lambda\)[/tex]). The formula connecting these two quantities is given by:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.62607015 \times 10^{-34}\)[/tex] Joule-seconds),
- [tex]\(c\)[/tex] is the speed of light in a vacuum ([tex]\(3 \times 10^8\)[/tex] meters per second),
- [tex]\(\lambda\)[/tex] is the wavelength.
Using this formula, we can calculate the energy for each of the waves A, B, C, and D. Here are the steps:
1. Wave A:
[tex]\[ \lambda_A = 3.0 \times 10^2 \, \text{m} \][/tex]
[tex]\[ E_A = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{3.0 \times 10^2} \][/tex]
[tex]\[ E_A = 6.62607015 \times 10^{-28} \, \text{J} \][/tex]
2. Wave B:
[tex]\[ \lambda_B = 4.0 \times 10^{-6} \, \text{m} \][/tex]
[tex]\[ E_B = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{4.0 \times 10^{-6}} \][/tex]
[tex]\[ E_B = 4.9695526125 \times 10^{-20} \, \text{J} \][/tex]
3. Wave C:
[tex]\[ \lambda_C = 1.2 \times 10^{-12} \, \text{m} \][/tex]
[tex]\[ E_C = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{1.2 \times 10^{-12}} \][/tex]
[tex]\[ E_C = 1.6565175375 \times 10^{-13} \, \text{J} \][/tex]
4. Wave D:
[tex]\[ \lambda_D = 2.0 \times 10^{-9} \, \text{m} \][/tex]
[tex]\[ E_D = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{2.0 \times 10^{-9}} \][/tex]
[tex]\[ E_D = 9.939105225 \times 10^{-17} \, \text{J} \][/tex]
From the calculated energies, we have:
- Energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex]
- Energy [tex]\(E_B = 4.9695526125 \times 10^{-20} \, \text{J}\)[/tex]
- Energy [tex]\(E_C = 1.6565175375 \times 10^{-13} \, \text{J}\)[/tex]
- Energy [tex]\(E_D = 9.939105225 \times 10^{-17} \, \text{J}\)[/tex]
Comparing these values, the wave with the least amount of energy is Wave A with energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex].
Therefore, the electromagnetic wave with the least amount of energy is Wave A.
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.62607015 \times 10^{-34}\)[/tex] Joule-seconds),
- [tex]\(c\)[/tex] is the speed of light in a vacuum ([tex]\(3 \times 10^8\)[/tex] meters per second),
- [tex]\(\lambda\)[/tex] is the wavelength.
Using this formula, we can calculate the energy for each of the waves A, B, C, and D. Here are the steps:
1. Wave A:
[tex]\[ \lambda_A = 3.0 \times 10^2 \, \text{m} \][/tex]
[tex]\[ E_A = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{3.0 \times 10^2} \][/tex]
[tex]\[ E_A = 6.62607015 \times 10^{-28} \, \text{J} \][/tex]
2. Wave B:
[tex]\[ \lambda_B = 4.0 \times 10^{-6} \, \text{m} \][/tex]
[tex]\[ E_B = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{4.0 \times 10^{-6}} \][/tex]
[tex]\[ E_B = 4.9695526125 \times 10^{-20} \, \text{J} \][/tex]
3. Wave C:
[tex]\[ \lambda_C = 1.2 \times 10^{-12} \, \text{m} \][/tex]
[tex]\[ E_C = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{1.2 \times 10^{-12}} \][/tex]
[tex]\[ E_C = 1.6565175375 \times 10^{-13} \, \text{J} \][/tex]
4. Wave D:
[tex]\[ \lambda_D = 2.0 \times 10^{-9} \, \text{m} \][/tex]
[tex]\[ E_D = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{2.0 \times 10^{-9}} \][/tex]
[tex]\[ E_D = 9.939105225 \times 10^{-17} \, \text{J} \][/tex]
From the calculated energies, we have:
- Energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex]
- Energy [tex]\(E_B = 4.9695526125 \times 10^{-20} \, \text{J}\)[/tex]
- Energy [tex]\(E_C = 1.6565175375 \times 10^{-13} \, \text{J}\)[/tex]
- Energy [tex]\(E_D = 9.939105225 \times 10^{-17} \, \text{J}\)[/tex]
Comparing these values, the wave with the least amount of energy is Wave A with energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex].
Therefore, the electromagnetic wave with the least amount of energy is Wave A.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.