Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which electromagnetic wave has the least amount of energy, we need to use the relationship between the energy of a wave ([tex]\(E\)[/tex]) and its wavelength ([tex]\(\lambda\)[/tex]). The formula connecting these two quantities is given by:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.62607015 \times 10^{-34}\)[/tex] Joule-seconds),
- [tex]\(c\)[/tex] is the speed of light in a vacuum ([tex]\(3 \times 10^8\)[/tex] meters per second),
- [tex]\(\lambda\)[/tex] is the wavelength.
Using this formula, we can calculate the energy for each of the waves A, B, C, and D. Here are the steps:
1. Wave A:
[tex]\[ \lambda_A = 3.0 \times 10^2 \, \text{m} \][/tex]
[tex]\[ E_A = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{3.0 \times 10^2} \][/tex]
[tex]\[ E_A = 6.62607015 \times 10^{-28} \, \text{J} \][/tex]
2. Wave B:
[tex]\[ \lambda_B = 4.0 \times 10^{-6} \, \text{m} \][/tex]
[tex]\[ E_B = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{4.0 \times 10^{-6}} \][/tex]
[tex]\[ E_B = 4.9695526125 \times 10^{-20} \, \text{J} \][/tex]
3. Wave C:
[tex]\[ \lambda_C = 1.2 \times 10^{-12} \, \text{m} \][/tex]
[tex]\[ E_C = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{1.2 \times 10^{-12}} \][/tex]
[tex]\[ E_C = 1.6565175375 \times 10^{-13} \, \text{J} \][/tex]
4. Wave D:
[tex]\[ \lambda_D = 2.0 \times 10^{-9} \, \text{m} \][/tex]
[tex]\[ E_D = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{2.0 \times 10^{-9}} \][/tex]
[tex]\[ E_D = 9.939105225 \times 10^{-17} \, \text{J} \][/tex]
From the calculated energies, we have:
- Energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex]
- Energy [tex]\(E_B = 4.9695526125 \times 10^{-20} \, \text{J}\)[/tex]
- Energy [tex]\(E_C = 1.6565175375 \times 10^{-13} \, \text{J}\)[/tex]
- Energy [tex]\(E_D = 9.939105225 \times 10^{-17} \, \text{J}\)[/tex]
Comparing these values, the wave with the least amount of energy is Wave A with energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex].
Therefore, the electromagnetic wave with the least amount of energy is Wave A.
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.62607015 \times 10^{-34}\)[/tex] Joule-seconds),
- [tex]\(c\)[/tex] is the speed of light in a vacuum ([tex]\(3 \times 10^8\)[/tex] meters per second),
- [tex]\(\lambda\)[/tex] is the wavelength.
Using this formula, we can calculate the energy for each of the waves A, B, C, and D. Here are the steps:
1. Wave A:
[tex]\[ \lambda_A = 3.0 \times 10^2 \, \text{m} \][/tex]
[tex]\[ E_A = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{3.0 \times 10^2} \][/tex]
[tex]\[ E_A = 6.62607015 \times 10^{-28} \, \text{J} \][/tex]
2. Wave B:
[tex]\[ \lambda_B = 4.0 \times 10^{-6} \, \text{m} \][/tex]
[tex]\[ E_B = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{4.0 \times 10^{-6}} \][/tex]
[tex]\[ E_B = 4.9695526125 \times 10^{-20} \, \text{J} \][/tex]
3. Wave C:
[tex]\[ \lambda_C = 1.2 \times 10^{-12} \, \text{m} \][/tex]
[tex]\[ E_C = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{1.2 \times 10^{-12}} \][/tex]
[tex]\[ E_C = 1.6565175375 \times 10^{-13} \, \text{J} \][/tex]
4. Wave D:
[tex]\[ \lambda_D = 2.0 \times 10^{-9} \, \text{m} \][/tex]
[tex]\[ E_D = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{2.0 \times 10^{-9}} \][/tex]
[tex]\[ E_D = 9.939105225 \times 10^{-17} \, \text{J} \][/tex]
From the calculated energies, we have:
- Energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex]
- Energy [tex]\(E_B = 4.9695526125 \times 10^{-20} \, \text{J}\)[/tex]
- Energy [tex]\(E_C = 1.6565175375 \times 10^{-13} \, \text{J}\)[/tex]
- Energy [tex]\(E_D = 9.939105225 \times 10^{-17} \, \text{J}\)[/tex]
Comparing these values, the wave with the least amount of energy is Wave A with energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex].
Therefore, the electromagnetic wave with the least amount of energy is Wave A.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.