At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The table below shows the wavelength of four electromagnetic waves in meters [tex]\((m)\)[/tex].

\begin{tabular}{|c|c|}
\hline
Electromagnetic Wave & Wavelength \\
\hline
A & [tex]\(3.0 \times 10^2 \, m\)[/tex] \\
\hline
B & [tex]\(4.0 \times 10^{-6} \, m\)[/tex] \\
\hline
C & [tex]\(1.2 \times 10^{-12} \, m\)[/tex] \\
\hline
D & [tex]\(2.0 \times 10^{-9} \, m\)[/tex] \\
\hline
\end{tabular}

According to the table, which electromagnetic wave has the least amount of energy?

A. A

B. B

C. C

D. D


Sagot :

To determine which electromagnetic wave has the least amount of energy, we need to use the relationship between the energy of a wave ([tex]\(E\)[/tex]) and its wavelength ([tex]\(\lambda\)[/tex]). The formula connecting these two quantities is given by:

[tex]\[ E = \frac{hc}{\lambda} \][/tex]

where:
- [tex]\(h\)[/tex] is Planck's constant ([tex]\(6.62607015 \times 10^{-34}\)[/tex] Joule-seconds),
- [tex]\(c\)[/tex] is the speed of light in a vacuum ([tex]\(3 \times 10^8\)[/tex] meters per second),
- [tex]\(\lambda\)[/tex] is the wavelength.

Using this formula, we can calculate the energy for each of the waves A, B, C, and D. Here are the steps:

1. Wave A:
[tex]\[ \lambda_A = 3.0 \times 10^2 \, \text{m} \][/tex]
[tex]\[ E_A = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{3.0 \times 10^2} \][/tex]
[tex]\[ E_A = 6.62607015 \times 10^{-28} \, \text{J} \][/tex]

2. Wave B:
[tex]\[ \lambda_B = 4.0 \times 10^{-6} \, \text{m} \][/tex]
[tex]\[ E_B = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{4.0 \times 10^{-6}} \][/tex]
[tex]\[ E_B = 4.9695526125 \times 10^{-20} \, \text{J} \][/tex]

3. Wave C:
[tex]\[ \lambda_C = 1.2 \times 10^{-12} \, \text{m} \][/tex]
[tex]\[ E_C = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{1.2 \times 10^{-12}} \][/tex]
[tex]\[ E_C = 1.6565175375 \times 10^{-13} \, \text{J} \][/tex]

4. Wave D:
[tex]\[ \lambda_D = 2.0 \times 10^{-9} \, \text{m} \][/tex]
[tex]\[ E_D = \frac{6.62607015 \times 10^{-34} \times 3 \times 10^8}{2.0 \times 10^{-9}} \][/tex]
[tex]\[ E_D = 9.939105225 \times 10^{-17} \, \text{J} \][/tex]

From the calculated energies, we have:
- Energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex]
- Energy [tex]\(E_B = 4.9695526125 \times 10^{-20} \, \text{J}\)[/tex]
- Energy [tex]\(E_C = 1.6565175375 \times 10^{-13} \, \text{J}\)[/tex]
- Energy [tex]\(E_D = 9.939105225 \times 10^{-17} \, \text{J}\)[/tex]

Comparing these values, the wave with the least amount of energy is Wave A with energy [tex]\(E_A = 6.62607015 \times 10^{-28} \, \text{J}\)[/tex].

Therefore, the electromagnetic wave with the least amount of energy is Wave A.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.