Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly, let's go through the solution step-by-step.
### Part A: Finding the Vertex of [tex]\( V(x) \)[/tex]
The quadratic function representing the value of the home is given by:
[tex]\[ V(x) = 325x^2 - 4600x + 145000 \][/tex]
To find the vertex of this quadratic function, we use the vertex formula for a quadratic equation [tex]\( ax^2 + bx + c \)[/tex], where the x-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = 325 \)[/tex], [tex]\( b = -4600 \)[/tex], and [tex]\( c = 145000 \)[/tex].
Step 1: Calculate the x-coordinate of the vertex
[tex]\[ x = -\frac{b}{2a} = -\frac{-4600}{2 \cdot 325} = \frac{4600}{650} \approx 7.0769 \][/tex]
So, the x-coordinate of the vertex is approximately 7.0769.
Step 2: Calculate the y-coordinate of the vertex
The y-coordinate is found by substituting [tex]\( x \)[/tex] back into the quadratic function:
[tex]\[ V(7.0769) = 325(7.0769)^2 - 4600(7.0769) + 145000 \][/tex]
[tex]\[ V(7.0769) \approx 128723.08 \][/tex]
So, the vertex of the quadratic function [tex]\( V(x) \)[/tex] is approximately [tex]\( (7.0769, 128723.08) \)[/tex].
### Part B: Interpretation of the Vertex
The x-coordinate of the vertex represents the number of years after 2020 when the home value reaches its maximum or minimum. Since the coefficient of [tex]\( x^2 \)[/tex] (i.e., [tex]\( 325 \)[/tex]) is positive, this indicates the parabola opens upwards, meaning the vertex represents the minimum value of the home.
Interpretation:
The x-coordinate of the vertex is approximately 7.0769, which corresponds to the year:
[tex]\[ 2020 + 7.0769 \approx 2027.0769 \][/tex]
So, around the year 2027, the value of the home reaches its minimum.
The y-coordinate of the vertex indicates the minimum value of the home at that time, which is approximately [tex]\( \$128723.08 \)[/tex].
Summary:
- Vertex: [tex]\( (7.0769, 128723.08) \)[/tex]
- Year of Minimum Value: Approximately 2027
- Minimum Home Value: Approximately [tex]\( \$128723.08 \)[/tex]
Therefore, in around 2027, the home's value reaches its minimum, which is approximately [tex]\( \$128723.08 \)[/tex].
### Part A: Finding the Vertex of [tex]\( V(x) \)[/tex]
The quadratic function representing the value of the home is given by:
[tex]\[ V(x) = 325x^2 - 4600x + 145000 \][/tex]
To find the vertex of this quadratic function, we use the vertex formula for a quadratic equation [tex]\( ax^2 + bx + c \)[/tex], where the x-coordinate of the vertex is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Here, [tex]\( a = 325 \)[/tex], [tex]\( b = -4600 \)[/tex], and [tex]\( c = 145000 \)[/tex].
Step 1: Calculate the x-coordinate of the vertex
[tex]\[ x = -\frac{b}{2a} = -\frac{-4600}{2 \cdot 325} = \frac{4600}{650} \approx 7.0769 \][/tex]
So, the x-coordinate of the vertex is approximately 7.0769.
Step 2: Calculate the y-coordinate of the vertex
The y-coordinate is found by substituting [tex]\( x \)[/tex] back into the quadratic function:
[tex]\[ V(7.0769) = 325(7.0769)^2 - 4600(7.0769) + 145000 \][/tex]
[tex]\[ V(7.0769) \approx 128723.08 \][/tex]
So, the vertex of the quadratic function [tex]\( V(x) \)[/tex] is approximately [tex]\( (7.0769, 128723.08) \)[/tex].
### Part B: Interpretation of the Vertex
The x-coordinate of the vertex represents the number of years after 2020 when the home value reaches its maximum or minimum. Since the coefficient of [tex]\( x^2 \)[/tex] (i.e., [tex]\( 325 \)[/tex]) is positive, this indicates the parabola opens upwards, meaning the vertex represents the minimum value of the home.
Interpretation:
The x-coordinate of the vertex is approximately 7.0769, which corresponds to the year:
[tex]\[ 2020 + 7.0769 \approx 2027.0769 \][/tex]
So, around the year 2027, the value of the home reaches its minimum.
The y-coordinate of the vertex indicates the minimum value of the home at that time, which is approximately [tex]\( \$128723.08 \)[/tex].
Summary:
- Vertex: [tex]\( (7.0769, 128723.08) \)[/tex]
- Year of Minimum Value: Approximately 2027
- Minimum Home Value: Approximately [tex]\( \$128723.08 \)[/tex]
Therefore, in around 2027, the home's value reaches its minimum, which is approximately [tex]\( \$128723.08 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.