Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's break this down step-by-step to find the probability [tex]\( P(\bar{x}>427) \)[/tex]:
1. Understand the Problem:
- Mean weight of cows ([tex]\(\mu\)[/tex]) = 408 pounds
- Standard deviation of cow weights ([tex]\(\sigma\)[/tex]) = 50 pounds
- Sample size ([tex]\(n\)[/tex]) = 12 cows
- Maximum allowed total weight = 5124 pounds
- Maximum allowed average weight [tex]\( = \frac{5124}{12} = 427 \)[/tex] pounds
2. Compute the Standard Error of the Mean (SEM):
The standard error of the mean ([tex]\(\text{SEM}\)[/tex]) is calculated as:
[tex]\[ \text{SEM} = \frac{\sigma}{\sqrt{n}} \][/tex]
Plugging in the values:
[tex]\[ \text{SEM} = \frac{50}{\sqrt{12}} \approx 14.4338 \][/tex]
3. Find the Z-score:
The Z-score for the threshold mean weight (427 pounds) is calculated as:
[tex]\[ Z = \frac{\bar{x} - \mu}{\text{SEM}} \][/tex]
Plugging in the values:
[tex]\[ Z = \frac{427 - 408}{14.4338} \approx 1.3164 \][/tex]
4. Determine the Probability:
The probability that the sample mean weight ([tex]\(\bar{x}\)[/tex]) is over 427 pounds corresponds to the area under the normal distribution curve to the right of the Z-score we calculated.
Using a standard normal distribution table or a computational tool, we find the cumulative probability for [tex]\( Z = 1.3164 \)[/tex]:
[tex]\[ P(Z < 1.3164) \approx 0.9059731468307299 \][/tex]
The area to the right of this Z-score will give us the probability that the mean weight is greater than 427 pounds:
[tex]\[ P(\bar{x} > 427) = 1 - P(Z < 1.3164) \approx 1 - 0.9059731468307299 \approx 0.0940 \][/tex]
Hence, the probability that their total weight will be over the maximum allowed of 5124 pounds is approximately:
[tex]\[ P(\bar{x} > 427) \approx 0.0940 \][/tex]
So, the final answer is:
[tex]\[ P(\bar{x} > 427) = 0.0940 \][/tex]
1. Understand the Problem:
- Mean weight of cows ([tex]\(\mu\)[/tex]) = 408 pounds
- Standard deviation of cow weights ([tex]\(\sigma\)[/tex]) = 50 pounds
- Sample size ([tex]\(n\)[/tex]) = 12 cows
- Maximum allowed total weight = 5124 pounds
- Maximum allowed average weight [tex]\( = \frac{5124}{12} = 427 \)[/tex] pounds
2. Compute the Standard Error of the Mean (SEM):
The standard error of the mean ([tex]\(\text{SEM}\)[/tex]) is calculated as:
[tex]\[ \text{SEM} = \frac{\sigma}{\sqrt{n}} \][/tex]
Plugging in the values:
[tex]\[ \text{SEM} = \frac{50}{\sqrt{12}} \approx 14.4338 \][/tex]
3. Find the Z-score:
The Z-score for the threshold mean weight (427 pounds) is calculated as:
[tex]\[ Z = \frac{\bar{x} - \mu}{\text{SEM}} \][/tex]
Plugging in the values:
[tex]\[ Z = \frac{427 - 408}{14.4338} \approx 1.3164 \][/tex]
4. Determine the Probability:
The probability that the sample mean weight ([tex]\(\bar{x}\)[/tex]) is over 427 pounds corresponds to the area under the normal distribution curve to the right of the Z-score we calculated.
Using a standard normal distribution table or a computational tool, we find the cumulative probability for [tex]\( Z = 1.3164 \)[/tex]:
[tex]\[ P(Z < 1.3164) \approx 0.9059731468307299 \][/tex]
The area to the right of this Z-score will give us the probability that the mean weight is greater than 427 pounds:
[tex]\[ P(\bar{x} > 427) = 1 - P(Z < 1.3164) \approx 1 - 0.9059731468307299 \approx 0.0940 \][/tex]
Hence, the probability that their total weight will be over the maximum allowed of 5124 pounds is approximately:
[tex]\[ P(\bar{x} > 427) \approx 0.0940 \][/tex]
So, the final answer is:
[tex]\[ P(\bar{x} > 427) = 0.0940 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.