Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem of finding the area of sector [tex]\( AOB \)[/tex], we need to follow these steps:
1. Calculate the radius of the circle:
Given [tex]\( OA = 5 \)[/tex], the circle's radius [tex]\( r \)[/tex] is 5 units.
2. Determine the value of [tex]\(\pi\)[/tex]:
For this problem, [tex]\(\pi = 3.14\)[/tex].
3. Calculate the circumference of the circle:
The formula for the circumference [tex]\( C \)[/tex] of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
Plugging in the values:
[tex]\[ C = 2 \times 3.14 \times 5 = 31.4 \text{ units} \][/tex]
4. Find the length of the arc [tex]\( \hat{AB} \)[/tex]:
According to the problem, the length of [tex]\( \hat{AB} \)[/tex] as a fraction of the circumference is [tex]\(\frac{1}{4}\)[/tex]. Therefore:
[tex]\[ \text{Length of } \hat{AB} = \frac{1}{4} \times 31.4 = 7.85 \text{ units} \][/tex]
5. Calculate the area of the circle:
The formula for the area [tex]\( A \)[/tex] of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
Substituting the known values:
[tex]\[ A = 3.14 \times (5^2) = 3.14 \times 25 = 78.5 \text{ square units} \][/tex]
6. Determine the area of sector [tex]\( AOB \)[/tex]:
The area of sector [tex]\( AOB \)[/tex] is proportional to the arc length, which in this case is [tex]\(\frac{1}{4}\)[/tex] of the circle's area. Therefore:
[tex]\[ \text{Area of sector } AOB = \frac{\text{Length of } \hat{AB}}{\text{Circumference}} \times A = \frac{7.85}{31.4} \times 78.5 = \frac{1}{4} \times 78.5 = 19.625 \text{ square units} \][/tex]
The final area of sector [tex]\( AOB \)[/tex] is approximately 19.625 square units. Therefore, the answer closest to this value is:
A. 19.6 square units
1. Calculate the radius of the circle:
Given [tex]\( OA = 5 \)[/tex], the circle's radius [tex]\( r \)[/tex] is 5 units.
2. Determine the value of [tex]\(\pi\)[/tex]:
For this problem, [tex]\(\pi = 3.14\)[/tex].
3. Calculate the circumference of the circle:
The formula for the circumference [tex]\( C \)[/tex] of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
Plugging in the values:
[tex]\[ C = 2 \times 3.14 \times 5 = 31.4 \text{ units} \][/tex]
4. Find the length of the arc [tex]\( \hat{AB} \)[/tex]:
According to the problem, the length of [tex]\( \hat{AB} \)[/tex] as a fraction of the circumference is [tex]\(\frac{1}{4}\)[/tex]. Therefore:
[tex]\[ \text{Length of } \hat{AB} = \frac{1}{4} \times 31.4 = 7.85 \text{ units} \][/tex]
5. Calculate the area of the circle:
The formula for the area [tex]\( A \)[/tex] of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
Substituting the known values:
[tex]\[ A = 3.14 \times (5^2) = 3.14 \times 25 = 78.5 \text{ square units} \][/tex]
6. Determine the area of sector [tex]\( AOB \)[/tex]:
The area of sector [tex]\( AOB \)[/tex] is proportional to the arc length, which in this case is [tex]\(\frac{1}{4}\)[/tex] of the circle's area. Therefore:
[tex]\[ \text{Area of sector } AOB = \frac{\text{Length of } \hat{AB}}{\text{Circumference}} \times A = \frac{7.85}{31.4} \times 78.5 = \frac{1}{4} \times 78.5 = 19.625 \text{ square units} \][/tex]
The final area of sector [tex]\( AOB \)[/tex] is approximately 19.625 square units. Therefore, the answer closest to this value is:
A. 19.6 square units
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.