Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Type the correct answer in the box.

A restaurant uses rectangular napkins where the length, [tex]\( l \)[/tex], is twice as long as the width. The length of the napkin is [tex]\( 2w \)[/tex]. Replace [tex]\( a \)[/tex] and [tex]\( b \)[/tex] with the correct values.

[tex]\[ x = \frac{\sqrt{a}}{b} \][/tex]


Sagot :

Certainly! Let's solve the given problem step-by-step.

1. Determine the dimensions:
- The length of the napkin, [tex]\( l \)[/tex], is twice as long as the width, [tex]\( w \)[/tex].
- So if the width [tex]\( w = 1 \)[/tex] unit, then the length [tex]\( l = 2 \times w = 2 \)[/tex] units.

2. Calculate the length of the diagonal:
- The napkin forms a right triangle with the length and width.
- According to the Pythagorean theorem: [tex]\[ \text{diagonal}^2 = l^2 + w^2 \][/tex]
- Substituting the values: [tex]\[ \text{diagonal}^2 = (2 \times 1)^2 + (1)^2 \][/tex]
- Simplify: [tex]\[ \text{diagonal}^2 = 2^2 + 1^2 = 4 + 1 = 5 \][/tex]
- Therefore, [tex]\[ \text{diagonal} = \sqrt{5} \][/tex]

3. Replace [tex]\( a \)[/tex] and [tex]\( b \)[/tex] with appropriate values:
- Here, [tex]\( a \)[/tex] corresponds to the value under the square root in the expression [tex]\( \sqrt{a} \)[/tex].
- From the calculation above, we have [tex]\( \text{diagonal} = \sqrt{5} \)[/tex].
- Therefore, [tex]\( a = 5 \)[/tex].
- The expression given is: [tex]\[ x = \frac{\sqrt{a}}{b} \][/tex]
- Given the length [tex]\( l = 2 \)[/tex], it corresponds to [tex]\( b \)[/tex]=2.

Thus, the values we are looking for are:
[tex]\[ a = 5, \, b = 2 \][/tex]

Finally, substituting [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the expression:
[tex]\[ x = \frac{\sqrt{5}}{2} \][/tex]

This matches the result given in the problem. Here is your final boxed answer:
[tex]\[ a = 5, \, b = 2 \][/tex]