Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the given problem step-by-step.
1. Determine the dimensions:
- The length of the napkin, [tex]\( l \)[/tex], is twice as long as the width, [tex]\( w \)[/tex].
- So if the width [tex]\( w = 1 \)[/tex] unit, then the length [tex]\( l = 2 \times w = 2 \)[/tex] units.
2. Calculate the length of the diagonal:
- The napkin forms a right triangle with the length and width.
- According to the Pythagorean theorem: [tex]\[ \text{diagonal}^2 = l^2 + w^2 \][/tex]
- Substituting the values: [tex]\[ \text{diagonal}^2 = (2 \times 1)^2 + (1)^2 \][/tex]
- Simplify: [tex]\[ \text{diagonal}^2 = 2^2 + 1^2 = 4 + 1 = 5 \][/tex]
- Therefore, [tex]\[ \text{diagonal} = \sqrt{5} \][/tex]
3. Replace [tex]\( a \)[/tex] and [tex]\( b \)[/tex] with appropriate values:
- Here, [tex]\( a \)[/tex] corresponds to the value under the square root in the expression [tex]\( \sqrt{a} \)[/tex].
- From the calculation above, we have [tex]\( \text{diagonal} = \sqrt{5} \)[/tex].
- Therefore, [tex]\( a = 5 \)[/tex].
- The expression given is: [tex]\[ x = \frac{\sqrt{a}}{b} \][/tex]
- Given the length [tex]\( l = 2 \)[/tex], it corresponds to [tex]\( b \)[/tex]=2.
Thus, the values we are looking for are:
[tex]\[ a = 5, \, b = 2 \][/tex]
Finally, substituting [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the expression:
[tex]\[ x = \frac{\sqrt{5}}{2} \][/tex]
This matches the result given in the problem. Here is your final boxed answer:
[tex]\[ a = 5, \, b = 2 \][/tex]
1. Determine the dimensions:
- The length of the napkin, [tex]\( l \)[/tex], is twice as long as the width, [tex]\( w \)[/tex].
- So if the width [tex]\( w = 1 \)[/tex] unit, then the length [tex]\( l = 2 \times w = 2 \)[/tex] units.
2. Calculate the length of the diagonal:
- The napkin forms a right triangle with the length and width.
- According to the Pythagorean theorem: [tex]\[ \text{diagonal}^2 = l^2 + w^2 \][/tex]
- Substituting the values: [tex]\[ \text{diagonal}^2 = (2 \times 1)^2 + (1)^2 \][/tex]
- Simplify: [tex]\[ \text{diagonal}^2 = 2^2 + 1^2 = 4 + 1 = 5 \][/tex]
- Therefore, [tex]\[ \text{diagonal} = \sqrt{5} \][/tex]
3. Replace [tex]\( a \)[/tex] and [tex]\( b \)[/tex] with appropriate values:
- Here, [tex]\( a \)[/tex] corresponds to the value under the square root in the expression [tex]\( \sqrt{a} \)[/tex].
- From the calculation above, we have [tex]\( \text{diagonal} = \sqrt{5} \)[/tex].
- Therefore, [tex]\( a = 5 \)[/tex].
- The expression given is: [tex]\[ x = \frac{\sqrt{a}}{b} \][/tex]
- Given the length [tex]\( l = 2 \)[/tex], it corresponds to [tex]\( b \)[/tex]=2.
Thus, the values we are looking for are:
[tex]\[ a = 5, \, b = 2 \][/tex]
Finally, substituting [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the expression:
[tex]\[ x = \frac{\sqrt{5}}{2} \][/tex]
This matches the result given in the problem. Here is your final boxed answer:
[tex]\[ a = 5, \, b = 2 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.