Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, I'll guide you through the calculation of the normality of the tin ion in the given solution step by step.
1. Given Data:
- Mass of Tin(IV) chloride, [tex]\(SnCl_4\)[/tex] = 21.1780 grams
- Volume of the solution = 500.0 milliliters (mL)
- Molar Mass of [tex]\(SnCl_4\)[/tex] = 260.52 grams per mole (g/mol)
2. Convert the Volume from mL to Liters (L):
[tex]\[ \text{Volume of solution (L)} = \frac{\text{Volume of solution (mL)}}{1000} \][/tex]
[tex]\[ \text{Volume of solution (L)} = \frac{500.0}{1000} = 0.5 \, \text{L} \][/tex]
3. Calculate the Moles of [tex]\(SnCl_4\)[/tex]:
[tex]\[ \text{Moles of } SnCl_4 = \frac{\text{Mass of } SnCl_4}{\text{Molar Mass of } SnCl_4} \][/tex]
[tex]\[ \text{Moles of } SnCl_4 = \frac{21.1780 \, \text{g}}{260.52 \, \text{g/mol}} \approx 0.08129126362659297 \, \text{mol} \][/tex]
4. Since 1 mole of [tex]\(SnCl_4\)[/tex] produces 1 mole of [tex]\(Sn^{4+}\)[/tex] (because there is one Sn ion in each [tex]\(SnCl_4\)[/tex] unit):
[tex]\[ \text{Moles of } Sn^{4+} = \text{Moles of } SnCl_4 = 0.08129126362659297 \, \text{mol} \][/tex]
5. Determine the Normality:
Normality (N) is defined as the number of equivalents of the solute per liter of solution. For the tin ion [tex]\( (Sn^{4+}) \)[/tex], it undergoes a valence change of 4 in the reaction [tex]\( Sn ^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq) \)[/tex].
Therefore, the factor of [tex]\( Sn^{4+} \)[/tex] in its half-reaction is 4.
Normality (N) = [tex]\(\frac{\text{Equivalents of solute}}{\text{Volume of solution in liters}}\)[/tex]
The equivalents of [tex]\( Sn^{4+} \)[/tex] will be:
[tex]\[ \text{Equivalents of } Sn^{4+} = \text{Moles of } Sn^{4+} \times 4 \][/tex]
[tex]\[ \text{Equivalents of } Sn^{4+} = 0.08129126362659297 \times 4 = 0.3251650545063719 \][/tex]
Therefore, the Normality (N) is:
[tex]\[ \text{Normality (N)} = \frac{\text{Equivalents of } Sn^{4+}}{\text{Volume of solution in L}} \][/tex]
[tex]\[ \text{Normality (N)} = \frac{0.3251650545063719}{0.5} = 0.6503301090127438 \, \text{N} \][/tex]
So, the normality of the tin ion ([tex]\(Sn^{4+}\)[/tex]) is approximately [tex]\( 0.6503 \, \text{N} \)[/tex].
1. Given Data:
- Mass of Tin(IV) chloride, [tex]\(SnCl_4\)[/tex] = 21.1780 grams
- Volume of the solution = 500.0 milliliters (mL)
- Molar Mass of [tex]\(SnCl_4\)[/tex] = 260.52 grams per mole (g/mol)
2. Convert the Volume from mL to Liters (L):
[tex]\[ \text{Volume of solution (L)} = \frac{\text{Volume of solution (mL)}}{1000} \][/tex]
[tex]\[ \text{Volume of solution (L)} = \frac{500.0}{1000} = 0.5 \, \text{L} \][/tex]
3. Calculate the Moles of [tex]\(SnCl_4\)[/tex]:
[tex]\[ \text{Moles of } SnCl_4 = \frac{\text{Mass of } SnCl_4}{\text{Molar Mass of } SnCl_4} \][/tex]
[tex]\[ \text{Moles of } SnCl_4 = \frac{21.1780 \, \text{g}}{260.52 \, \text{g/mol}} \approx 0.08129126362659297 \, \text{mol} \][/tex]
4. Since 1 mole of [tex]\(SnCl_4\)[/tex] produces 1 mole of [tex]\(Sn^{4+}\)[/tex] (because there is one Sn ion in each [tex]\(SnCl_4\)[/tex] unit):
[tex]\[ \text{Moles of } Sn^{4+} = \text{Moles of } SnCl_4 = 0.08129126362659297 \, \text{mol} \][/tex]
5. Determine the Normality:
Normality (N) is defined as the number of equivalents of the solute per liter of solution. For the tin ion [tex]\( (Sn^{4+}) \)[/tex], it undergoes a valence change of 4 in the reaction [tex]\( Sn ^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq) \)[/tex].
Therefore, the factor of [tex]\( Sn^{4+} \)[/tex] in its half-reaction is 4.
Normality (N) = [tex]\(\frac{\text{Equivalents of solute}}{\text{Volume of solution in liters}}\)[/tex]
The equivalents of [tex]\( Sn^{4+} \)[/tex] will be:
[tex]\[ \text{Equivalents of } Sn^{4+} = \text{Moles of } Sn^{4+} \times 4 \][/tex]
[tex]\[ \text{Equivalents of } Sn^{4+} = 0.08129126362659297 \times 4 = 0.3251650545063719 \][/tex]
Therefore, the Normality (N) is:
[tex]\[ \text{Normality (N)} = \frac{\text{Equivalents of } Sn^{4+}}{\text{Volume of solution in L}} \][/tex]
[tex]\[ \text{Normality (N)} = \frac{0.3251650545063719}{0.5} = 0.6503301090127438 \, \text{N} \][/tex]
So, the normality of the tin ion ([tex]\(Sn^{4+}\)[/tex]) is approximately [tex]\( 0.6503 \, \text{N} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.