Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, I'll guide you through the calculation of the normality of the tin ion in the given solution step by step.
1. Given Data:
- Mass of Tin(IV) chloride, [tex]\(SnCl_4\)[/tex] = 21.1780 grams
- Volume of the solution = 500.0 milliliters (mL)
- Molar Mass of [tex]\(SnCl_4\)[/tex] = 260.52 grams per mole (g/mol)
2. Convert the Volume from mL to Liters (L):
[tex]\[ \text{Volume of solution (L)} = \frac{\text{Volume of solution (mL)}}{1000} \][/tex]
[tex]\[ \text{Volume of solution (L)} = \frac{500.0}{1000} = 0.5 \, \text{L} \][/tex]
3. Calculate the Moles of [tex]\(SnCl_4\)[/tex]:
[tex]\[ \text{Moles of } SnCl_4 = \frac{\text{Mass of } SnCl_4}{\text{Molar Mass of } SnCl_4} \][/tex]
[tex]\[ \text{Moles of } SnCl_4 = \frac{21.1780 \, \text{g}}{260.52 \, \text{g/mol}} \approx 0.08129126362659297 \, \text{mol} \][/tex]
4. Since 1 mole of [tex]\(SnCl_4\)[/tex] produces 1 mole of [tex]\(Sn^{4+}\)[/tex] (because there is one Sn ion in each [tex]\(SnCl_4\)[/tex] unit):
[tex]\[ \text{Moles of } Sn^{4+} = \text{Moles of } SnCl_4 = 0.08129126362659297 \, \text{mol} \][/tex]
5. Determine the Normality:
Normality (N) is defined as the number of equivalents of the solute per liter of solution. For the tin ion [tex]\( (Sn^{4+}) \)[/tex], it undergoes a valence change of 4 in the reaction [tex]\( Sn ^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq) \)[/tex].
Therefore, the factor of [tex]\( Sn^{4+} \)[/tex] in its half-reaction is 4.
Normality (N) = [tex]\(\frac{\text{Equivalents of solute}}{\text{Volume of solution in liters}}\)[/tex]
The equivalents of [tex]\( Sn^{4+} \)[/tex] will be:
[tex]\[ \text{Equivalents of } Sn^{4+} = \text{Moles of } Sn^{4+} \times 4 \][/tex]
[tex]\[ \text{Equivalents of } Sn^{4+} = 0.08129126362659297 \times 4 = 0.3251650545063719 \][/tex]
Therefore, the Normality (N) is:
[tex]\[ \text{Normality (N)} = \frac{\text{Equivalents of } Sn^{4+}}{\text{Volume of solution in L}} \][/tex]
[tex]\[ \text{Normality (N)} = \frac{0.3251650545063719}{0.5} = 0.6503301090127438 \, \text{N} \][/tex]
So, the normality of the tin ion ([tex]\(Sn^{4+}\)[/tex]) is approximately [tex]\( 0.6503 \, \text{N} \)[/tex].
1. Given Data:
- Mass of Tin(IV) chloride, [tex]\(SnCl_4\)[/tex] = 21.1780 grams
- Volume of the solution = 500.0 milliliters (mL)
- Molar Mass of [tex]\(SnCl_4\)[/tex] = 260.52 grams per mole (g/mol)
2. Convert the Volume from mL to Liters (L):
[tex]\[ \text{Volume of solution (L)} = \frac{\text{Volume of solution (mL)}}{1000} \][/tex]
[tex]\[ \text{Volume of solution (L)} = \frac{500.0}{1000} = 0.5 \, \text{L} \][/tex]
3. Calculate the Moles of [tex]\(SnCl_4\)[/tex]:
[tex]\[ \text{Moles of } SnCl_4 = \frac{\text{Mass of } SnCl_4}{\text{Molar Mass of } SnCl_4} \][/tex]
[tex]\[ \text{Moles of } SnCl_4 = \frac{21.1780 \, \text{g}}{260.52 \, \text{g/mol}} \approx 0.08129126362659297 \, \text{mol} \][/tex]
4. Since 1 mole of [tex]\(SnCl_4\)[/tex] produces 1 mole of [tex]\(Sn^{4+}\)[/tex] (because there is one Sn ion in each [tex]\(SnCl_4\)[/tex] unit):
[tex]\[ \text{Moles of } Sn^{4+} = \text{Moles of } SnCl_4 = 0.08129126362659297 \, \text{mol} \][/tex]
5. Determine the Normality:
Normality (N) is defined as the number of equivalents of the solute per liter of solution. For the tin ion [tex]\( (Sn^{4+}) \)[/tex], it undergoes a valence change of 4 in the reaction [tex]\( Sn ^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq) \)[/tex].
Therefore, the factor of [tex]\( Sn^{4+} \)[/tex] in its half-reaction is 4.
Normality (N) = [tex]\(\frac{\text{Equivalents of solute}}{\text{Volume of solution in liters}}\)[/tex]
The equivalents of [tex]\( Sn^{4+} \)[/tex] will be:
[tex]\[ \text{Equivalents of } Sn^{4+} = \text{Moles of } Sn^{4+} \times 4 \][/tex]
[tex]\[ \text{Equivalents of } Sn^{4+} = 0.08129126362659297 \times 4 = 0.3251650545063719 \][/tex]
Therefore, the Normality (N) is:
[tex]\[ \text{Normality (N)} = \frac{\text{Equivalents of } Sn^{4+}}{\text{Volume of solution in L}} \][/tex]
[tex]\[ \text{Normality (N)} = \frac{0.3251650545063719}{0.5} = 0.6503301090127438 \, \text{N} \][/tex]
So, the normality of the tin ion ([tex]\(Sn^{4+}\)[/tex]) is approximately [tex]\( 0.6503 \, \text{N} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.