Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Using the half-reaction below, determine the normality of the tin ion when [tex]$21.1780 \, g$[/tex] of tin (IV) chloride [tex]\left( \text{SnCl}_4 \right)[/tex] is dissolved in [tex]$500.0 \, \text{mL}$[/tex] of water. (2 pts)

[tex]
\text{Sn}^{4+} \, (aq) + 2e^{-} \rightarrow \text{Sn}^{2+} \, (aq)
[/tex]


Sagot :

Sure, I'll guide you through the calculation of the normality of the tin ion in the given solution step by step.

1. Given Data:
- Mass of Tin(IV) chloride, [tex]\(SnCl_4\)[/tex] = 21.1780 grams
- Volume of the solution = 500.0 milliliters (mL)
- Molar Mass of [tex]\(SnCl_4\)[/tex] = 260.52 grams per mole (g/mol)

2. Convert the Volume from mL to Liters (L):
[tex]\[ \text{Volume of solution (L)} = \frac{\text{Volume of solution (mL)}}{1000} \][/tex]
[tex]\[ \text{Volume of solution (L)} = \frac{500.0}{1000} = 0.5 \, \text{L} \][/tex]

3. Calculate the Moles of [tex]\(SnCl_4\)[/tex]:
[tex]\[ \text{Moles of } SnCl_4 = \frac{\text{Mass of } SnCl_4}{\text{Molar Mass of } SnCl_4} \][/tex]
[tex]\[ \text{Moles of } SnCl_4 = \frac{21.1780 \, \text{g}}{260.52 \, \text{g/mol}} \approx 0.08129126362659297 \, \text{mol} \][/tex]

4. Since 1 mole of [tex]\(SnCl_4\)[/tex] produces 1 mole of [tex]\(Sn^{4+}\)[/tex] (because there is one Sn ion in each [tex]\(SnCl_4\)[/tex] unit):
[tex]\[ \text{Moles of } Sn^{4+} = \text{Moles of } SnCl_4 = 0.08129126362659297 \, \text{mol} \][/tex]

5. Determine the Normality:
Normality (N) is defined as the number of equivalents of the solute per liter of solution. For the tin ion [tex]\( (Sn^{4+}) \)[/tex], it undergoes a valence change of 4 in the reaction [tex]\( Sn ^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq) \)[/tex].

Therefore, the factor of [tex]\( Sn^{4+} \)[/tex] in its half-reaction is 4.

Normality (N) = [tex]\(\frac{\text{Equivalents of solute}}{\text{Volume of solution in liters}}\)[/tex]

The equivalents of [tex]\( Sn^{4+} \)[/tex] will be:
[tex]\[ \text{Equivalents of } Sn^{4+} = \text{Moles of } Sn^{4+} \times 4 \][/tex]
[tex]\[ \text{Equivalents of } Sn^{4+} = 0.08129126362659297 \times 4 = 0.3251650545063719 \][/tex]

Therefore, the Normality (N) is:
[tex]\[ \text{Normality (N)} = \frac{\text{Equivalents of } Sn^{4+}}{\text{Volume of solution in L}} \][/tex]
[tex]\[ \text{Normality (N)} = \frac{0.3251650545063719}{0.5} = 0.6503301090127438 \, \text{N} \][/tex]

So, the normality of the tin ion ([tex]\(Sn^{4+}\)[/tex]) is approximately [tex]\( 0.6503 \, \text{N} \)[/tex].