Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem of finding the probability that a randomly chosen student was either male or got a "B" (or both), we can use the concepts of probability and the principles of set theory. Here is a detailed step-by-step solution:
### Given Data:
1. Total number of students: [tex]\( 76 \)[/tex]
2. Number of male students: [tex]\( 42 \)[/tex]
3. Number of students who got a "B": [tex]\( 29 \)[/tex]
4. Number of male students who got a "B": [tex]\( 14 \)[/tex]
### Step-by-Step Solution:
Step 1: Calculate the probability of a student being male.
[tex]\[ \text{Probability of being male} = \frac{\text{Number of male students}}{\text{Total number of students}} = \frac{42}{76} \][/tex]
[tex]\[ \text{Probability of being male} = 0.5526315789473685 \][/tex]
Step 2: Calculate the probability of a student getting a "B."
[tex]\[ \text{Probability of getting a "B"} = \frac{\text{Number of students who got a "B"}}{\text{Total number of students}} = \frac{29}{76} \][/tex]
[tex]\[ \text{Probability of getting a "B"} = 0.3815789473684211 \][/tex]
Step 3: Calculate the probability of a student being both male and getting a "B."
[tex]\[ \text{Probability of being male and getting a "B"} = \frac{\text{Number of male students who got a "B"}}{\text{Total number of students}} = \frac{14}{76} \][/tex]
[tex]\[ \text{Probability of being male and getting a "B"} = 0.18421052631578946 \][/tex]
Step 4: Use the formula for the probability of the union of two events (Male ∪ B):
[tex]\[ \text{Probability of (Male OR B)} = \text{Probability of (Male)} + \text{Probability of (B)} - \text{Probability of (Male AND B)} \][/tex]
[tex]\[ \text{Probability of (Male OR B)} = 0.5526315789473685 + 0.3815789473684211 - 0.18421052631578946 \][/tex]
[tex]\[ \text{Probability of (Male OR B)} = 0.7500000000000001 \][/tex]
### Conclusion:
The probability that a randomly chosen student was either male or got a "B" is [tex]\( 0.7500000000000001 \)[/tex] or [tex]\( 75\% \)[/tex].
### Given Data:
1. Total number of students: [tex]\( 76 \)[/tex]
2. Number of male students: [tex]\( 42 \)[/tex]
3. Number of students who got a "B": [tex]\( 29 \)[/tex]
4. Number of male students who got a "B": [tex]\( 14 \)[/tex]
### Step-by-Step Solution:
Step 1: Calculate the probability of a student being male.
[tex]\[ \text{Probability of being male} = \frac{\text{Number of male students}}{\text{Total number of students}} = \frac{42}{76} \][/tex]
[tex]\[ \text{Probability of being male} = 0.5526315789473685 \][/tex]
Step 2: Calculate the probability of a student getting a "B."
[tex]\[ \text{Probability of getting a "B"} = \frac{\text{Number of students who got a "B"}}{\text{Total number of students}} = \frac{29}{76} \][/tex]
[tex]\[ \text{Probability of getting a "B"} = 0.3815789473684211 \][/tex]
Step 3: Calculate the probability of a student being both male and getting a "B."
[tex]\[ \text{Probability of being male and getting a "B"} = \frac{\text{Number of male students who got a "B"}}{\text{Total number of students}} = \frac{14}{76} \][/tex]
[tex]\[ \text{Probability of being male and getting a "B"} = 0.18421052631578946 \][/tex]
Step 4: Use the formula for the probability of the union of two events (Male ∪ B):
[tex]\[ \text{Probability of (Male OR B)} = \text{Probability of (Male)} + \text{Probability of (B)} - \text{Probability of (Male AND B)} \][/tex]
[tex]\[ \text{Probability of (Male OR B)} = 0.5526315789473685 + 0.3815789473684211 - 0.18421052631578946 \][/tex]
[tex]\[ \text{Probability of (Male OR B)} = 0.7500000000000001 \][/tex]
### Conclusion:
The probability that a randomly chosen student was either male or got a "B" is [tex]\( 0.7500000000000001 \)[/tex] or [tex]\( 75\% \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.