Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Find the value of [tex]$m$[/tex].

Polynomials [tex]$p(x) = 8x^2 - 2mx + 5$[/tex] and [tex][tex]$g(x) = 8x^2 - (m + 2)x + 5$[/tex][/tex] are equal to each other.


Sagot :

To determine the value of [tex]\( m \)[/tex] such that the polynomials [tex]\( p(x) \)[/tex] and [tex]\( g(x) \)[/tex] are equal, follow these steps:

Given polynomials are:
[tex]\[ p(x) = 8x^2 - 2mx + 5 \][/tex]
[tex]\[ g(x) = 8x^2 - (m + 2)x + 5 \][/tex]

For these polynomials to be equal, their corresponding coefficients must be identical. Let's compare the coefficients of like terms one by one:

1. The coefficients of [tex]\( x^2 \)[/tex]:
[tex]\[ 8 = 8 \][/tex]
This is already satisfied.

2. The coefficients of the constant term:
[tex]\[ 5 = 5 \][/tex]
This is also already satisfied.

3. The coefficients of [tex]\( x \)[/tex]:
We need to equate the coefficients of [tex]\( x \)[/tex] from both polynomials:
[tex]\[ -2m = -(m + 2) \][/tex]

Now, let's solve this equation for [tex]\( m \)[/tex]:

First, remove the negative signs from both sides:
[tex]\[ -2m = -m - 2 \][/tex]

Next, we simplify and rearrange the equation to isolate [tex]\( m \)[/tex] on one side:
[tex]\[ -2m + m = -2 \][/tex]
[tex]\[ -m = -2 \][/tex]

Finally, multiply both sides of the equation by -1 to solve for [tex]\( m \)[/tex]:
[tex]\[ m = 2 \][/tex]

Therefore, the value of [tex]\( m \)[/tex] is:
[tex]\[ \boxed{2} \][/tex]