Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value of [tex]\( m \)[/tex] such that the polynomials [tex]\( p(x) \)[/tex] and [tex]\( g(x) \)[/tex] are equal, follow these steps:
Given polynomials are:
[tex]\[ p(x) = 8x^2 - 2mx + 5 \][/tex]
[tex]\[ g(x) = 8x^2 - (m + 2)x + 5 \][/tex]
For these polynomials to be equal, their corresponding coefficients must be identical. Let's compare the coefficients of like terms one by one:
1. The coefficients of [tex]\( x^2 \)[/tex]:
[tex]\[ 8 = 8 \][/tex]
This is already satisfied.
2. The coefficients of the constant term:
[tex]\[ 5 = 5 \][/tex]
This is also already satisfied.
3. The coefficients of [tex]\( x \)[/tex]:
We need to equate the coefficients of [tex]\( x \)[/tex] from both polynomials:
[tex]\[ -2m = -(m + 2) \][/tex]
Now, let's solve this equation for [tex]\( m \)[/tex]:
First, remove the negative signs from both sides:
[tex]\[ -2m = -m - 2 \][/tex]
Next, we simplify and rearrange the equation to isolate [tex]\( m \)[/tex] on one side:
[tex]\[ -2m + m = -2 \][/tex]
[tex]\[ -m = -2 \][/tex]
Finally, multiply both sides of the equation by -1 to solve for [tex]\( m \)[/tex]:
[tex]\[ m = 2 \][/tex]
Therefore, the value of [tex]\( m \)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
Given polynomials are:
[tex]\[ p(x) = 8x^2 - 2mx + 5 \][/tex]
[tex]\[ g(x) = 8x^2 - (m + 2)x + 5 \][/tex]
For these polynomials to be equal, their corresponding coefficients must be identical. Let's compare the coefficients of like terms one by one:
1. The coefficients of [tex]\( x^2 \)[/tex]:
[tex]\[ 8 = 8 \][/tex]
This is already satisfied.
2. The coefficients of the constant term:
[tex]\[ 5 = 5 \][/tex]
This is also already satisfied.
3. The coefficients of [tex]\( x \)[/tex]:
We need to equate the coefficients of [tex]\( x \)[/tex] from both polynomials:
[tex]\[ -2m = -(m + 2) \][/tex]
Now, let's solve this equation for [tex]\( m \)[/tex]:
First, remove the negative signs from both sides:
[tex]\[ -2m = -m - 2 \][/tex]
Next, we simplify and rearrange the equation to isolate [tex]\( m \)[/tex] on one side:
[tex]\[ -2m + m = -2 \][/tex]
[tex]\[ -m = -2 \][/tex]
Finally, multiply both sides of the equation by -1 to solve for [tex]\( m \)[/tex]:
[tex]\[ m = 2 \][/tex]
Therefore, the value of [tex]\( m \)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.