Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the problem of finding the probability that the number of correct answers [tex]\( X \)[/tex] is fewer than 4 in a scenario where there are [tex]\( n = 6 \)[/tex] trials, each with a probability of success [tex]\( p = 0.35 \)[/tex], we can use the binomial distribution formula.
The binomial distribution provides the probability of having exactly [tex]\( k \)[/tex] successes in [tex]\( n \)[/tex] independent Bernoulli trials with the same probability of success [tex]\( p \)[/tex]. The probability mass function (PMF) for a binomial distribution is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Where:
- [tex]\(\binom{n}{k} = \frac{n!}{k! (n-k)!}\)[/tex] is the binomial coefficient,
- [tex]\( n = 6 \)[/tex] is the number of trials,
- [tex]\( p = 0.35 \)[/tex] is the probability of success on a single trial,
- [tex]\( k \)[/tex] is the number of successes (correct answers).
We need to find the probability that [tex]\( X \)[/tex] is fewer than 4, which means summing the probabilities for [tex]\( X = 0 \)[/tex], [tex]\( X = 1 \)[/tex], [tex]\( X = 2 \)[/tex], and [tex]\( X = 3 \)[/tex]:
[tex]\[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
Now we compute each term separately:
1. [tex]\( P(X = 0) \)[/tex]:
[tex]\[ P(X = 0) = \binom{6}{0} (0.35)^0 (0.65)^6 = 1 \times 1 \times (0.65)^6 \approx 0.1160 \][/tex]
2. [tex]\( P(X = 1) \)[/tex]:
[tex]\[ P(X = 1) = \binom{6}{1} (0.35)^1 (0.65)^5 = 6 \times 0.35 \times (0.65)^5 \approx 0.1618 \][/tex]
3. [tex]\( P(X = 2) \)[/tex]:
[tex]\[ P(X = 2) = \binom{6}{2} (0.35)^2 (0.65)^4 = 15 \times (0.35)^2 \times (0.65)^4 \approx 0.2248 \][/tex]
4. [tex]\( P(X = 3) \)[/tex]:
[tex]\[ P(X = 3) = \binom{6}{3} (0.35)^3 (0.65)^3 = 20 \times (0.35)^3 \times (0.65)^3 \approx 0.3800 \][/tex]
Adding these probabilities:
[tex]\[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
[tex]\[ P(X < 4) \approx 0.1160 + 0.1618 + 0.2248 + 0.3800 = 0.8826 \][/tex]
Therefore, the probability that the number of correct answers is fewer than 4 is [tex]\( \boxed{0.8826} \)[/tex].
The binomial distribution provides the probability of having exactly [tex]\( k \)[/tex] successes in [tex]\( n \)[/tex] independent Bernoulli trials with the same probability of success [tex]\( p \)[/tex]. The probability mass function (PMF) for a binomial distribution is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Where:
- [tex]\(\binom{n}{k} = \frac{n!}{k! (n-k)!}\)[/tex] is the binomial coefficient,
- [tex]\( n = 6 \)[/tex] is the number of trials,
- [tex]\( p = 0.35 \)[/tex] is the probability of success on a single trial,
- [tex]\( k \)[/tex] is the number of successes (correct answers).
We need to find the probability that [tex]\( X \)[/tex] is fewer than 4, which means summing the probabilities for [tex]\( X = 0 \)[/tex], [tex]\( X = 1 \)[/tex], [tex]\( X = 2 \)[/tex], and [tex]\( X = 3 \)[/tex]:
[tex]\[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
Now we compute each term separately:
1. [tex]\( P(X = 0) \)[/tex]:
[tex]\[ P(X = 0) = \binom{6}{0} (0.35)^0 (0.65)^6 = 1 \times 1 \times (0.65)^6 \approx 0.1160 \][/tex]
2. [tex]\( P(X = 1) \)[/tex]:
[tex]\[ P(X = 1) = \binom{6}{1} (0.35)^1 (0.65)^5 = 6 \times 0.35 \times (0.65)^5 \approx 0.1618 \][/tex]
3. [tex]\( P(X = 2) \)[/tex]:
[tex]\[ P(X = 2) = \binom{6}{2} (0.35)^2 (0.65)^4 = 15 \times (0.35)^2 \times (0.65)^4 \approx 0.2248 \][/tex]
4. [tex]\( P(X = 3) \)[/tex]:
[tex]\[ P(X = 3) = \binom{6}{3} (0.35)^3 (0.65)^3 = 20 \times (0.35)^3 \times (0.65)^3 \approx 0.3800 \][/tex]
Adding these probabilities:
[tex]\[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
[tex]\[ P(X < 4) \approx 0.1160 + 0.1618 + 0.2248 + 0.3800 = 0.8826 \][/tex]
Therefore, the probability that the number of correct answers is fewer than 4 is [tex]\( \boxed{0.8826} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.