Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which ordered pair [tex]\((x, y)\)[/tex] is a solution to the system of equations:
[tex]\[ 3x + 4y = 18 \][/tex]
[tex]\[ y = \frac{3}{2}x \][/tex]
We will check each option to see if it satisfies both equations.
### Option A: [tex]\((2, 3)\)[/tex]
1. Plug [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex] into the first equation:
[tex]\[ 3(2) + 4(3) = 6 + 12 = 18 \][/tex]
This satisfies the first equation.
2. Check the second equation with [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex]:
[tex]\[ y = \frac{3}{2}(2) = 3 \][/tex]
This satisfies the second equation.
Since [tex]\((2, 3)\)[/tex] satisfies both equations, [tex]\((2, 3)\)[/tex] is a solution to the system.
### Option B: [tex]\((3, 2.25)\)[/tex]
1. Plug [tex]\(x = 3\)[/tex] and [tex]\(y = 2.25\)[/tex] into the first equation:
[tex]\[ 3(3) + 4(2.25) = 9 + 9 = 18 \][/tex]
This satisfies the first equation.
2. Check the second equation with [tex]\(x = 3\)[/tex] and [tex]\(y = 2.25\)[/tex]:
[tex]\[ y = \frac{3}{2}(3) = 4.5 \][/tex]
This does not satisfy the second equation since [tex]\(2.25 \neq 4.5\)[/tex].
Since [tex]\((3, 2.25)\)[/tex] does not satisfy both equations, it is not a solution to the system.
### Option C: [tex]\((4, 1.5)\)[/tex]
1. Plug [tex]\(x = 4\)[/tex] and [tex]\(y = 1.5\)[/tex] into the first equation:
[tex]\[ 3(4) + 4(1.5) = 12 + 6 = 18 \][/tex]
This satisfies the first equation.
2. Check the second equation with [tex]\(x = 4\)[/tex] and [tex]\(y = 1.5\)[/tex]:
[tex]\[ y = \frac{3}{2}(4) = 6 \][/tex]
This does not satisfy the second equation since [tex]\(1.5 \neq 6\)[/tex].
Since [tex]\((4, 1.5)\)[/tex] does not satisfy both equations, it is not a solution to the system.
### Option D: [tex]\((4, 6)\)[/tex]
1. Plug [tex]\(x = 4\)[/tex] and [tex]\(y = 6\)[/tex] into the first equation:
[tex]\[ 3(4) + 4(6) = 12 + 24 = 36 \][/tex]
This does not satisfy the first equation since [tex]\(36 \neq 18\)[/tex].
2. Check the second equation with [tex]\(x = 4\)[/tex] and [tex]\(y = 6\)[/tex]:
[tex]\[ y = \frac{3}{2}(4) = 6 \][/tex]
This satisfies the second equation.
Since [tex]\((4, 6)\)[/tex] does not satisfy both equations, it is not a solution to the system.
### Conclusion
The ordered pair [tex]\((2, 3)\)[/tex] satisfies both equations in the system. Therefore, the solution to the system of equations [tex]\[ 3x + 4y = 18 \][/tex] and [tex]\[ y = \frac{3}{2}x \][/tex] is:
A. [tex]\((2, 3)\)[/tex]
[tex]\[ 3x + 4y = 18 \][/tex]
[tex]\[ y = \frac{3}{2}x \][/tex]
We will check each option to see if it satisfies both equations.
### Option A: [tex]\((2, 3)\)[/tex]
1. Plug [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex] into the first equation:
[tex]\[ 3(2) + 4(3) = 6 + 12 = 18 \][/tex]
This satisfies the first equation.
2. Check the second equation with [tex]\(x = 2\)[/tex] and [tex]\(y = 3\)[/tex]:
[tex]\[ y = \frac{3}{2}(2) = 3 \][/tex]
This satisfies the second equation.
Since [tex]\((2, 3)\)[/tex] satisfies both equations, [tex]\((2, 3)\)[/tex] is a solution to the system.
### Option B: [tex]\((3, 2.25)\)[/tex]
1. Plug [tex]\(x = 3\)[/tex] and [tex]\(y = 2.25\)[/tex] into the first equation:
[tex]\[ 3(3) + 4(2.25) = 9 + 9 = 18 \][/tex]
This satisfies the first equation.
2. Check the second equation with [tex]\(x = 3\)[/tex] and [tex]\(y = 2.25\)[/tex]:
[tex]\[ y = \frac{3}{2}(3) = 4.5 \][/tex]
This does not satisfy the second equation since [tex]\(2.25 \neq 4.5\)[/tex].
Since [tex]\((3, 2.25)\)[/tex] does not satisfy both equations, it is not a solution to the system.
### Option C: [tex]\((4, 1.5)\)[/tex]
1. Plug [tex]\(x = 4\)[/tex] and [tex]\(y = 1.5\)[/tex] into the first equation:
[tex]\[ 3(4) + 4(1.5) = 12 + 6 = 18 \][/tex]
This satisfies the first equation.
2. Check the second equation with [tex]\(x = 4\)[/tex] and [tex]\(y = 1.5\)[/tex]:
[tex]\[ y = \frac{3}{2}(4) = 6 \][/tex]
This does not satisfy the second equation since [tex]\(1.5 \neq 6\)[/tex].
Since [tex]\((4, 1.5)\)[/tex] does not satisfy both equations, it is not a solution to the system.
### Option D: [tex]\((4, 6)\)[/tex]
1. Plug [tex]\(x = 4\)[/tex] and [tex]\(y = 6\)[/tex] into the first equation:
[tex]\[ 3(4) + 4(6) = 12 + 24 = 36 \][/tex]
This does not satisfy the first equation since [tex]\(36 \neq 18\)[/tex].
2. Check the second equation with [tex]\(x = 4\)[/tex] and [tex]\(y = 6\)[/tex]:
[tex]\[ y = \frac{3}{2}(4) = 6 \][/tex]
This satisfies the second equation.
Since [tex]\((4, 6)\)[/tex] does not satisfy both equations, it is not a solution to the system.
### Conclusion
The ordered pair [tex]\((2, 3)\)[/tex] satisfies both equations in the system. Therefore, the solution to the system of equations [tex]\[ 3x + 4y = 18 \][/tex] and [tex]\[ y = \frac{3}{2}x \][/tex] is:
A. [tex]\((2, 3)\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.