Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Evaluate the expression:

[tex]\[
C(10,6)
\][/tex]

[tex]\[
C(10,6) =
\][/tex]

Sagot :

Sure, let's evaluate the expression [tex]\( C(10, 6) \)[/tex], which represents the number of combinations of choosing 6 items from a set of 10 items.

The formula for combinations is given by:
[tex]\[ C(n, k) = \frac{n!}{k!(n-k)!} \][/tex]
where [tex]\( n \)[/tex] is the total number of items, [tex]\( k \)[/tex] is the number of items to choose, and [tex]\( ! \)[/tex] denotes factorial, which is the product of all positive integers up to that number.

For our specific case:
[tex]\[ n = 10 \quad \text{and} \quad k = 6 \][/tex]

So, substituting the values into the formula, we get:
[tex]\[ C(10, 6) = \frac{10!}{6! \cdot (10 - 6)!} = \frac{10!}{6! \cdot 4!} \][/tex]

Using the factorial values:
[tex]\[ 10! = 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 \][/tex]

Substituting these into the formula:
[tex]\[ C(10, 6) = \frac{10 \times 9 \times 8 \times 7 \times 6!}{6! \times 4 \times 3 \times 2 \times 1} \][/tex]

Canceling the [tex]\( 6! \)[/tex] terms from the numerator and the denominator:
[tex]\[ C(10, 6) = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} \][/tex]

Calculating the remaining products and division:
[tex]\[ 10 \times 9 = 90 \][/tex]
[tex]\[ 90 \times 8 = 720 \][/tex]
[tex]\[ 720 \times 7 = 5040 \][/tex]
[tex]\[ 4 \times 3 = 12 \][/tex]
[tex]\[ 12 \times 2 = 24 \][/tex]
[tex]\[ 24 \times 1 = 24 \][/tex]

Finally, dividing the products:
[tex]\[ C(10, 6) = \frac{5040}{24} = 210 \][/tex]

Therefore, the value of [tex]\( C(10, 6) \)[/tex] is:
[tex]\[ 210 \][/tex]

This is the number of ways to choose 6 items from a set of 10 items.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.