Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the correct equation involving Giulia's rate of work [tex]\( r \)[/tex] in parts per hour, let's break down the problem step-by-step.
1. Rocco's Rate of Work:
- Rocco can paint the room alone in 7 hours.
- Therefore, Rocco's rate of work is [tex]\(\frac{1}{7}\)[/tex] parts per hour.
2. Time Taken Together:
- Rocco and Giulia, working together, can paint the room in 3 hours.
3. Contribution of Work when Working Together:
- Together they paint one entire room (which can be considered as 1 part) in 3 hours.
- Thus, the combined rate of Rocco and Giulia is [tex]\(\frac{1}{3}\)[/tex] rooms per hour.
4. Rocco's Contribution:
- Rocco's rate is [tex]\(\frac{1}{7}\)[/tex] parts per hour, so in 3 hours, he paints [tex]\(3 \times \frac{1}{7} = \frac{3}{7}\)[/tex] of the room.
5. Giulia's Contribution:
- Let [tex]\( r \)[/tex] be Giulia's rate of work in parts per hour.
- In 3 hours, Giulia would paint [tex]\( 3r \)[/tex] parts of the room.
6. Total Work Done:
- The total work done by Rocco and Giulia together in 3 hours should be 1 entire room.
- Therefore, [tex]\( \frac{3}{7} + 3r = 1 \)[/tex].
7. Equation for Giulia's Rate of Work:
- Hence, the equation we can use to determine [tex]\( r \)[/tex] is:
[tex]\[ \frac{3}{7} + 3r = 1 \][/tex]
Thus, the equation to determine [tex]\( r \)[/tex], Giulia's rate of work in parts per hour, is:
[tex]\[ \boxed{\frac{3}{7} + 3r = 1} \][/tex]
1. Rocco's Rate of Work:
- Rocco can paint the room alone in 7 hours.
- Therefore, Rocco's rate of work is [tex]\(\frac{1}{7}\)[/tex] parts per hour.
2. Time Taken Together:
- Rocco and Giulia, working together, can paint the room in 3 hours.
3. Contribution of Work when Working Together:
- Together they paint one entire room (which can be considered as 1 part) in 3 hours.
- Thus, the combined rate of Rocco and Giulia is [tex]\(\frac{1}{3}\)[/tex] rooms per hour.
4. Rocco's Contribution:
- Rocco's rate is [tex]\(\frac{1}{7}\)[/tex] parts per hour, so in 3 hours, he paints [tex]\(3 \times \frac{1}{7} = \frac{3}{7}\)[/tex] of the room.
5. Giulia's Contribution:
- Let [tex]\( r \)[/tex] be Giulia's rate of work in parts per hour.
- In 3 hours, Giulia would paint [tex]\( 3r \)[/tex] parts of the room.
6. Total Work Done:
- The total work done by Rocco and Giulia together in 3 hours should be 1 entire room.
- Therefore, [tex]\( \frac{3}{7} + 3r = 1 \)[/tex].
7. Equation for Giulia's Rate of Work:
- Hence, the equation we can use to determine [tex]\( r \)[/tex] is:
[tex]\[ \frac{3}{7} + 3r = 1 \][/tex]
Thus, the equation to determine [tex]\( r \)[/tex], Giulia's rate of work in parts per hour, is:
[tex]\[ \boxed{\frac{3}{7} + 3r = 1} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.