Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's break down the steps to solve this problem.
1. Identify the given information:
- The length of segment AB is provided as 2.20 units.
- Polygon ABCDE undergoes a reflection across the x-axis, which does not change the lengths of any of its sides.
- The reflected polygon A'B'C'DE is then dilated by a scale factor of 0.5 about point D.
2. Understand the transformation:
- When a polygon is dilated with a scale factor, the lengths of all its sides are multiplied by that scale factor.
- Thus, under a scale factor of 0.5, each side will become half of its original length.
3. Calculate the length of LM:
- Since vertices A and B correspond to L and M, respectively, the length of segment AB will be dilated to form the length of segment LM.
- To find the new length, multiply the original length of AB by the scale factor of 0.5.
[tex]\[ \text{Length of } LM = \text{Length of } AB \times \text{Scale Factor} \][/tex]
[tex]\[ \text{Length of } LM = 2.20 \text{ units} \times 0.5 \][/tex]
[tex]\[ \text{Length of } LM = 1.10 \text{ units} \][/tex]
Thus, the length of segment LM is 1.10 units.
1. Identify the given information:
- The length of segment AB is provided as 2.20 units.
- Polygon ABCDE undergoes a reflection across the x-axis, which does not change the lengths of any of its sides.
- The reflected polygon A'B'C'DE is then dilated by a scale factor of 0.5 about point D.
2. Understand the transformation:
- When a polygon is dilated with a scale factor, the lengths of all its sides are multiplied by that scale factor.
- Thus, under a scale factor of 0.5, each side will become half of its original length.
3. Calculate the length of LM:
- Since vertices A and B correspond to L and M, respectively, the length of segment AB will be dilated to form the length of segment LM.
- To find the new length, multiply the original length of AB by the scale factor of 0.5.
[tex]\[ \text{Length of } LM = \text{Length of } AB \times \text{Scale Factor} \][/tex]
[tex]\[ \text{Length of } LM = 2.20 \text{ units} \times 0.5 \][/tex]
[tex]\[ \text{Length of } LM = 1.10 \text{ units} \][/tex]
Thus, the length of segment LM is 1.10 units.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.