Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find the value of [tex]\( A \)[/tex] and [tex]\( B \)[/tex].

Given the curve equation [tex]\( y = A \sin x + B \sin 2x \)[/tex],

the curve passes through the point [tex]\( P \left( \frac{\pi}{2}, 3 \right) \)[/tex] and has a gradient of [tex]\( \frac{3 \sqrt{2}}{2} \)[/tex] when [tex]\( x = \frac{\pi}{4} \)[/tex].


Sagot :

Let's solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex] given the curve [tex]\( y = A \sin x + B \sin 2x \)[/tex] passes through the point [tex]\( P\left(\frac{\pi}{2}, 3\right) \)[/tex] and has a gradient of [tex]\( \frac{3 \sqrt{2}}{2} \)[/tex] when [tex]\( x = \frac{\pi}{4} \)[/tex].

### Step 1: Applying the Point Condition

First, use the condition that the curve passes through the point [tex]\( P\left(\frac{\pi}{2}, 3\right) \)[/tex].

At [tex]\( x = \frac{\pi}{2} \)[/tex]:
[tex]\[ y = A \sin\left(\frac{\pi}{2}\right) + B \sin\left(2 \cdot \frac{\pi}{2}\right) \][/tex]
Since [tex]\(\sin\left(\frac{\pi}{2}\right) = 1\)[/tex] and [tex]\(\sin(\pi) = 0\)[/tex]:
[tex]\[ 3 = A \cdot 1 + B \cdot 0 \][/tex]
[tex]\[ 3 = A \][/tex]

Thus,
[tex]\[ A = 3 \][/tex]

### Step 2: Applying the Gradient Condition

Next, use the gradient condition that the derivative of [tex]\( y \)[/tex] equals [tex]\( \frac{3 \sqrt{2}}{2} \)[/tex] when [tex]\( x = \frac{\pi}{4} \)[/tex].

First, compute the derivative [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ y = A \sin x + B \sin 2x \][/tex]
The derivative is:
[tex]\[ \frac{dy}{dx} = A \cos x + B \cdot 2 \cos 2x \][/tex]
[tex]\[ \frac{dy}{dx} = A \cos x + 2B \cos 2x \][/tex]

Since [tex]\( A = 3 \)[/tex], substitute and simplify:
[tex]\[ \frac{dy}{dx} = 3 \cos x + 2B \cos 2x \][/tex]

Evaluate this expression at [tex]\( x = \frac{\pi}{4} \)[/tex]:
[tex]\[ \left.\frac{dy}{dx}\right|_{x=\frac{\pi}{4}} = 3 \cos\left(\frac{\pi}{4}\right) + 2B \cos\left(2 \cdot \frac{\pi}{4}\right) \][/tex]

Using [tex]\(\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\)[/tex] and [tex]\(\cos\left(\frac{\pi}{2}\right) = 0\)[/tex]:
[tex]\[ \frac{3 \sqrt{2}}{2} = 3 \cdot \frac{1}{\sqrt{2}} + 2B \cdot 0 \][/tex]
[tex]\[ \frac{3 \sqrt{2}}{2} = \frac{3 \sqrt{2}}{2} \][/tex]

Since the equation holds true, this step confirms our obtained value for [tex]\( A \)[/tex]. To find [tex]\( B \)[/tex], there was no further dependency, so validate the conditions were correctly used.

Thus, the final values are:
[tex]\[ A = 3 \][/tex]
[tex]\[ B = \text{(any value as there's no constraint from gradient condition that affects B independently after A is fixed)} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.