At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the limit [tex]\(\lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}}\)[/tex], we need to carefully analyze the behavior of the function as [tex]\(x\)[/tex] approaches 2 from the right.
Here is a step-by-step solution:
1. Rewrite the Expression:
The given limit is:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} \][/tex]
Observe that both the numerator [tex]\(x - 2\)[/tex] and the denominator [tex]\(\sqrt{x-2}\)[/tex] involve the term [tex]\(x - 2\)[/tex].
2. Simplify the Expression:
Factorize the numerator in terms of the denominator:
[tex]\[ \frac{x-2}{\sqrt{x-2}} = \frac{y}{\sqrt{y}} \quad \text{where} \quad y = x - 2 \][/tex]
As [tex]\(x \to 2^{+}\)[/tex], [tex]\(y\)[/tex] approaches 0 from the right (i.e., [tex]\(y \to 0^{+}\)[/tex]).
3. Simplify Further:
The expression [tex]\(\frac{y}{\sqrt{y}}\)[/tex] can be simplified as follows:
[tex]\[ \frac{y}{\sqrt{y}} = \frac{y}{y^{1/2}} = y^{1 - 1/2} = y^{1/2} = \sqrt{y} \][/tex]
4. Take the Limit:
Now, we take the limit of [tex]\(\sqrt{y}\)[/tex] as [tex]\(y \to 0^{+}\)[/tex]:
[tex]\[ \lim_{{y \to 0^{+}}} \sqrt{y} \][/tex]
The square root function [tex]\(\sqrt{y}\)[/tex] approaches 0 as [tex]\(y\)[/tex] approaches 0 from the right.
5. Conclusion:
Therefore, the limit is:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} = \lim_{{y \to 0^{+}}} \sqrt{y} = 0 \][/tex]
So, we conclude that:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} = 0 \][/tex]
Here is a step-by-step solution:
1. Rewrite the Expression:
The given limit is:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} \][/tex]
Observe that both the numerator [tex]\(x - 2\)[/tex] and the denominator [tex]\(\sqrt{x-2}\)[/tex] involve the term [tex]\(x - 2\)[/tex].
2. Simplify the Expression:
Factorize the numerator in terms of the denominator:
[tex]\[ \frac{x-2}{\sqrt{x-2}} = \frac{y}{\sqrt{y}} \quad \text{where} \quad y = x - 2 \][/tex]
As [tex]\(x \to 2^{+}\)[/tex], [tex]\(y\)[/tex] approaches 0 from the right (i.e., [tex]\(y \to 0^{+}\)[/tex]).
3. Simplify Further:
The expression [tex]\(\frac{y}{\sqrt{y}}\)[/tex] can be simplified as follows:
[tex]\[ \frac{y}{\sqrt{y}} = \frac{y}{y^{1/2}} = y^{1 - 1/2} = y^{1/2} = \sqrt{y} \][/tex]
4. Take the Limit:
Now, we take the limit of [tex]\(\sqrt{y}\)[/tex] as [tex]\(y \to 0^{+}\)[/tex]:
[tex]\[ \lim_{{y \to 0^{+}}} \sqrt{y} \][/tex]
The square root function [tex]\(\sqrt{y}\)[/tex] approaches 0 as [tex]\(y\)[/tex] approaches 0 from the right.
5. Conclusion:
Therefore, the limit is:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} = \lim_{{y \to 0^{+}}} \sqrt{y} = 0 \][/tex]
So, we conclude that:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} = 0 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.