Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the limit [tex]\(\lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}}\)[/tex], we need to carefully analyze the behavior of the function as [tex]\(x\)[/tex] approaches 2 from the right.
Here is a step-by-step solution:
1. Rewrite the Expression:
The given limit is:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} \][/tex]
Observe that both the numerator [tex]\(x - 2\)[/tex] and the denominator [tex]\(\sqrt{x-2}\)[/tex] involve the term [tex]\(x - 2\)[/tex].
2. Simplify the Expression:
Factorize the numerator in terms of the denominator:
[tex]\[ \frac{x-2}{\sqrt{x-2}} = \frac{y}{\sqrt{y}} \quad \text{where} \quad y = x - 2 \][/tex]
As [tex]\(x \to 2^{+}\)[/tex], [tex]\(y\)[/tex] approaches 0 from the right (i.e., [tex]\(y \to 0^{+}\)[/tex]).
3. Simplify Further:
The expression [tex]\(\frac{y}{\sqrt{y}}\)[/tex] can be simplified as follows:
[tex]\[ \frac{y}{\sqrt{y}} = \frac{y}{y^{1/2}} = y^{1 - 1/2} = y^{1/2} = \sqrt{y} \][/tex]
4. Take the Limit:
Now, we take the limit of [tex]\(\sqrt{y}\)[/tex] as [tex]\(y \to 0^{+}\)[/tex]:
[tex]\[ \lim_{{y \to 0^{+}}} \sqrt{y} \][/tex]
The square root function [tex]\(\sqrt{y}\)[/tex] approaches 0 as [tex]\(y\)[/tex] approaches 0 from the right.
5. Conclusion:
Therefore, the limit is:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} = \lim_{{y \to 0^{+}}} \sqrt{y} = 0 \][/tex]
So, we conclude that:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} = 0 \][/tex]
Here is a step-by-step solution:
1. Rewrite the Expression:
The given limit is:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} \][/tex]
Observe that both the numerator [tex]\(x - 2\)[/tex] and the denominator [tex]\(\sqrt{x-2}\)[/tex] involve the term [tex]\(x - 2\)[/tex].
2. Simplify the Expression:
Factorize the numerator in terms of the denominator:
[tex]\[ \frac{x-2}{\sqrt{x-2}} = \frac{y}{\sqrt{y}} \quad \text{where} \quad y = x - 2 \][/tex]
As [tex]\(x \to 2^{+}\)[/tex], [tex]\(y\)[/tex] approaches 0 from the right (i.e., [tex]\(y \to 0^{+}\)[/tex]).
3. Simplify Further:
The expression [tex]\(\frac{y}{\sqrt{y}}\)[/tex] can be simplified as follows:
[tex]\[ \frac{y}{\sqrt{y}} = \frac{y}{y^{1/2}} = y^{1 - 1/2} = y^{1/2} = \sqrt{y} \][/tex]
4. Take the Limit:
Now, we take the limit of [tex]\(\sqrt{y}\)[/tex] as [tex]\(y \to 0^{+}\)[/tex]:
[tex]\[ \lim_{{y \to 0^{+}}} \sqrt{y} \][/tex]
The square root function [tex]\(\sqrt{y}\)[/tex] approaches 0 as [tex]\(y\)[/tex] approaches 0 from the right.
5. Conclusion:
Therefore, the limit is:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} = \lim_{{y \to 0^{+}}} \sqrt{y} = 0 \][/tex]
So, we conclude that:
[tex]\[ \lim_{{x \to 2^{+}}} \frac{x-2}{\sqrt{x-2}} = 0 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.