Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine Jose's margin of error, we need to follow these steps individually.
Step 1: Identify the Values Provided
- Standard deviation (Std Dev) for Jose's sample: [tex]\( \sigma = 50 \)[/tex] pounds
- Sample size for Jose's sample: [tex]\( n = 25 \)[/tex]
Step 2: Margin of Error Formula
The formula to calculate the margin of error (ME) is given:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{\sigma}{\sqrt{n}} \right) \][/tex]
where:
- [tex]\( 1.96 \)[/tex] is the z-value for a 95% confidence interval,
- [tex]\( \sigma \)[/tex] is the standard deviation,
- [tex]\( n \)[/tex] is the sample size.
Step 3: Plug in the Values
Using the values provided for Jose's sample:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{50}{\sqrt{25}} \right) \][/tex]
Step 4: Calculate the Standard Error
First, compute the denominator:
[tex]\[ \sqrt{25} = 5 \][/tex]
Now, substitute it back into the formula:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{50}{5} \right) \][/tex]
Step 5: Simplify the Expression
[tex]\[ \frac{50}{5} = 10 \][/tex]
Thus:
[tex]\[ \text{ME} = 1.96 \times 10 = 19.6 \][/tex]
Step 6: Round to the Nearest Whole Number
Finally, round 19.6 to the nearest whole number:
[tex]\[ \text{Rounded ME} = 20 \][/tex]
Therefore, Jose's margin of error, rounded to the nearest whole number, is:
(C) 20
Step 1: Identify the Values Provided
- Standard deviation (Std Dev) for Jose's sample: [tex]\( \sigma = 50 \)[/tex] pounds
- Sample size for Jose's sample: [tex]\( n = 25 \)[/tex]
Step 2: Margin of Error Formula
The formula to calculate the margin of error (ME) is given:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{\sigma}{\sqrt{n}} \right) \][/tex]
where:
- [tex]\( 1.96 \)[/tex] is the z-value for a 95% confidence interval,
- [tex]\( \sigma \)[/tex] is the standard deviation,
- [tex]\( n \)[/tex] is the sample size.
Step 3: Plug in the Values
Using the values provided for Jose's sample:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{50}{\sqrt{25}} \right) \][/tex]
Step 4: Calculate the Standard Error
First, compute the denominator:
[tex]\[ \sqrt{25} = 5 \][/tex]
Now, substitute it back into the formula:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{50}{5} \right) \][/tex]
Step 5: Simplify the Expression
[tex]\[ \frac{50}{5} = 10 \][/tex]
Thus:
[tex]\[ \text{ME} = 1.96 \times 10 = 19.6 \][/tex]
Step 6: Round to the Nearest Whole Number
Finally, round 19.6 to the nearest whole number:
[tex]\[ \text{Rounded ME} = 20 \][/tex]
Therefore, Jose's margin of error, rounded to the nearest whole number, is:
(C) 20
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.