Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine Jose's margin of error, we need to follow these steps individually.
Step 1: Identify the Values Provided
- Standard deviation (Std Dev) for Jose's sample: [tex]\( \sigma = 50 \)[/tex] pounds
- Sample size for Jose's sample: [tex]\( n = 25 \)[/tex]
Step 2: Margin of Error Formula
The formula to calculate the margin of error (ME) is given:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{\sigma}{\sqrt{n}} \right) \][/tex]
where:
- [tex]\( 1.96 \)[/tex] is the z-value for a 95% confidence interval,
- [tex]\( \sigma \)[/tex] is the standard deviation,
- [tex]\( n \)[/tex] is the sample size.
Step 3: Plug in the Values
Using the values provided for Jose's sample:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{50}{\sqrt{25}} \right) \][/tex]
Step 4: Calculate the Standard Error
First, compute the denominator:
[tex]\[ \sqrt{25} = 5 \][/tex]
Now, substitute it back into the formula:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{50}{5} \right) \][/tex]
Step 5: Simplify the Expression
[tex]\[ \frac{50}{5} = 10 \][/tex]
Thus:
[tex]\[ \text{ME} = 1.96 \times 10 = 19.6 \][/tex]
Step 6: Round to the Nearest Whole Number
Finally, round 19.6 to the nearest whole number:
[tex]\[ \text{Rounded ME} = 20 \][/tex]
Therefore, Jose's margin of error, rounded to the nearest whole number, is:
(C) 20
Step 1: Identify the Values Provided
- Standard deviation (Std Dev) for Jose's sample: [tex]\( \sigma = 50 \)[/tex] pounds
- Sample size for Jose's sample: [tex]\( n = 25 \)[/tex]
Step 2: Margin of Error Formula
The formula to calculate the margin of error (ME) is given:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{\sigma}{\sqrt{n}} \right) \][/tex]
where:
- [tex]\( 1.96 \)[/tex] is the z-value for a 95% confidence interval,
- [tex]\( \sigma \)[/tex] is the standard deviation,
- [tex]\( n \)[/tex] is the sample size.
Step 3: Plug in the Values
Using the values provided for Jose's sample:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{50}{\sqrt{25}} \right) \][/tex]
Step 4: Calculate the Standard Error
First, compute the denominator:
[tex]\[ \sqrt{25} = 5 \][/tex]
Now, substitute it back into the formula:
[tex]\[ \text{ME} = 1.96 \times \left( \frac{50}{5} \right) \][/tex]
Step 5: Simplify the Expression
[tex]\[ \frac{50}{5} = 10 \][/tex]
Thus:
[tex]\[ \text{ME} = 1.96 \times 10 = 19.6 \][/tex]
Step 6: Round to the Nearest Whole Number
Finally, round 19.6 to the nearest whole number:
[tex]\[ \text{Rounded ME} = 20 \][/tex]
Therefore, Jose's margin of error, rounded to the nearest whole number, is:
(C) 20
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.