Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem using the Hamilton method, we follow these steps:
1. Calculate the Standard Quota:
- State 1: 2.67
- State 2: 6.92
- State 3: 4.17
2. Initial Apportionment: Assign each state the integer part of its standard quota.
- State 1: [tex]\(\lfloor 2.67 \rfloor = 2\)[/tex]
- State 2: [tex]\(\lfloor 6.92 \rfloor = 6\)[/tex]
- State 3: [tex]\(\lfloor 4.17 \rfloor = 4\)[/tex]
3. Total Initial Apportionment:
[tex]\[ 2 + 6 + 4 = 12 \][/tex]
Thirteen seats are available, so one more seat needs to be allocated because [tex]\(13 - 12 = 1\)[/tex].
4. Calculate the Remainders (Decimal Parts) of Each State:
- State 1: [tex]\(2.67 - 2 = 0.67\)[/tex]
- State 2: [tex]\(6.92 - 6 = 0.92\)[/tex]
- State 3: [tex]\(4.17 - 4 = 0.17\)[/tex]
5. Allocate Remaining Seats Based on the Largest Remainders:
We have one remaining seat. We assign this seat to the state with the largest remainder.
- The remainders are:
- State 1: 0.67
- State 2: 0.92
- State 3: 0.17
The largest remainder is 0.92, which belongs to State 2.
6. Final Apportionment:
- State 1: 2 seats
- State 2: 7 seats (initial 6 + 1 additional seat)
- State 3: 4 seats
By following these calculations, the final apportionment according to the Hamilton method is:
[tex]\[ \boxed{(2, 7, 4)} \][/tex]
1. Calculate the Standard Quota:
- State 1: 2.67
- State 2: 6.92
- State 3: 4.17
2. Initial Apportionment: Assign each state the integer part of its standard quota.
- State 1: [tex]\(\lfloor 2.67 \rfloor = 2\)[/tex]
- State 2: [tex]\(\lfloor 6.92 \rfloor = 6\)[/tex]
- State 3: [tex]\(\lfloor 4.17 \rfloor = 4\)[/tex]
3. Total Initial Apportionment:
[tex]\[ 2 + 6 + 4 = 12 \][/tex]
Thirteen seats are available, so one more seat needs to be allocated because [tex]\(13 - 12 = 1\)[/tex].
4. Calculate the Remainders (Decimal Parts) of Each State:
- State 1: [tex]\(2.67 - 2 = 0.67\)[/tex]
- State 2: [tex]\(6.92 - 6 = 0.92\)[/tex]
- State 3: [tex]\(4.17 - 4 = 0.17\)[/tex]
5. Allocate Remaining Seats Based on the Largest Remainders:
We have one remaining seat. We assign this seat to the state with the largest remainder.
- The remainders are:
- State 1: 0.67
- State 2: 0.92
- State 3: 0.17
The largest remainder is 0.92, which belongs to State 2.
6. Final Apportionment:
- State 1: 2 seats
- State 2: 7 seats (initial 6 + 1 additional seat)
- State 3: 4 seats
By following these calculations, the final apportionment according to the Hamilton method is:
[tex]\[ \boxed{(2, 7, 4)} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.