Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem using the Hamilton method, we follow these steps:
1. Calculate the Standard Quota:
- State 1: 2.67
- State 2: 6.92
- State 3: 4.17
2. Initial Apportionment: Assign each state the integer part of its standard quota.
- State 1: [tex]\(\lfloor 2.67 \rfloor = 2\)[/tex]
- State 2: [tex]\(\lfloor 6.92 \rfloor = 6\)[/tex]
- State 3: [tex]\(\lfloor 4.17 \rfloor = 4\)[/tex]
3. Total Initial Apportionment:
[tex]\[ 2 + 6 + 4 = 12 \][/tex]
Thirteen seats are available, so one more seat needs to be allocated because [tex]\(13 - 12 = 1\)[/tex].
4. Calculate the Remainders (Decimal Parts) of Each State:
- State 1: [tex]\(2.67 - 2 = 0.67\)[/tex]
- State 2: [tex]\(6.92 - 6 = 0.92\)[/tex]
- State 3: [tex]\(4.17 - 4 = 0.17\)[/tex]
5. Allocate Remaining Seats Based on the Largest Remainders:
We have one remaining seat. We assign this seat to the state with the largest remainder.
- The remainders are:
- State 1: 0.67
- State 2: 0.92
- State 3: 0.17
The largest remainder is 0.92, which belongs to State 2.
6. Final Apportionment:
- State 1: 2 seats
- State 2: 7 seats (initial 6 + 1 additional seat)
- State 3: 4 seats
By following these calculations, the final apportionment according to the Hamilton method is:
[tex]\[ \boxed{(2, 7, 4)} \][/tex]
1. Calculate the Standard Quota:
- State 1: 2.67
- State 2: 6.92
- State 3: 4.17
2. Initial Apportionment: Assign each state the integer part of its standard quota.
- State 1: [tex]\(\lfloor 2.67 \rfloor = 2\)[/tex]
- State 2: [tex]\(\lfloor 6.92 \rfloor = 6\)[/tex]
- State 3: [tex]\(\lfloor 4.17 \rfloor = 4\)[/tex]
3. Total Initial Apportionment:
[tex]\[ 2 + 6 + 4 = 12 \][/tex]
Thirteen seats are available, so one more seat needs to be allocated because [tex]\(13 - 12 = 1\)[/tex].
4. Calculate the Remainders (Decimal Parts) of Each State:
- State 1: [tex]\(2.67 - 2 = 0.67\)[/tex]
- State 2: [tex]\(6.92 - 6 = 0.92\)[/tex]
- State 3: [tex]\(4.17 - 4 = 0.17\)[/tex]
5. Allocate Remaining Seats Based on the Largest Remainders:
We have one remaining seat. We assign this seat to the state with the largest remainder.
- The remainders are:
- State 1: 0.67
- State 2: 0.92
- State 3: 0.17
The largest remainder is 0.92, which belongs to State 2.
6. Final Apportionment:
- State 1: 2 seats
- State 2: 7 seats (initial 6 + 1 additional seat)
- State 3: 4 seats
By following these calculations, the final apportionment according to the Hamilton method is:
[tex]\[ \boxed{(2, 7, 4)} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.