Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To address the given questions step-by-step:
### Part (a)
We need to find the rate of change of [tex]\( S(t) \)[/tex], which is represented by the derivative of [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
Given the function:
[tex]\[ S(t) = 100,000 e^{-0.8 t} \][/tex]
1. To find the derivative [tex]\(\frac{dS}{dt}\)[/tex], we must differentiate [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
2. Using the chain rule, the differentiation of an exponential function [tex]\( a e^{kt} \)[/tex] with respect to [tex]\( t \)[/tex] is [tex]\( a k e^{kt} \)[/tex].
Thus,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot \frac{d}{dt}\left( e^{-0.8 t} \right) \][/tex]
3. Applying the chain rule to [tex]\( e^{-0.8 t} \)[/tex], we get:
[tex]\[ \frac{d}{dt}\left( e^{-0.8 t} \right) = -0.8 e^{-0.8 t} \][/tex]
Therefore,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot (-0.8) e^{-0.8 t} \][/tex]
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
Hence, the rate of change of [tex]\( S \)[/tex] is:
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
### Part (b)
To determine whether sales are decreasing, we should analyze both the function [tex]\( S(t) \)[/tex] and its derivative [tex]\(\frac{dS}{dt}\)[/tex].
1. The given function [tex]\( S(t) = 100,000 e^{-0.8 t} \)[/tex] is an exponential decay model. This is because it involves an exponential function with a negative exponent, representing a decreasing trend over time.
2. The derivative [tex]\(\frac{dS}{dt} = -80,000 e^{-0.8 t}\)[/tex] is our key indicator. Notice the following about the derivative:
- The term [tex]\( e^{-0.8 t} \)[/tex] is always positive for any value of [tex]\( t \geq 0 \)[/tex].
- The coefficient [tex]\(-80,000\)[/tex] makes [tex]\(\frac{dS}{dt}\)[/tex] always negative.
Since the derivative [tex]\(\frac{dS}{dt}\)[/tex] is always negative, it indicates that [tex]\( S(t) \)[/tex] is a decreasing function. This tells us that sales are continuously dropping over time.
Thus, the correct statements are:
- The given function is an exponential decay model.
- Additionally, the derivative of the given function is always negative, indicating sales are decreasing.
### Part (a)
We need to find the rate of change of [tex]\( S(t) \)[/tex], which is represented by the derivative of [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
Given the function:
[tex]\[ S(t) = 100,000 e^{-0.8 t} \][/tex]
1. To find the derivative [tex]\(\frac{dS}{dt}\)[/tex], we must differentiate [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
2. Using the chain rule, the differentiation of an exponential function [tex]\( a e^{kt} \)[/tex] with respect to [tex]\( t \)[/tex] is [tex]\( a k e^{kt} \)[/tex].
Thus,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot \frac{d}{dt}\left( e^{-0.8 t} \right) \][/tex]
3. Applying the chain rule to [tex]\( e^{-0.8 t} \)[/tex], we get:
[tex]\[ \frac{d}{dt}\left( e^{-0.8 t} \right) = -0.8 e^{-0.8 t} \][/tex]
Therefore,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot (-0.8) e^{-0.8 t} \][/tex]
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
Hence, the rate of change of [tex]\( S \)[/tex] is:
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
### Part (b)
To determine whether sales are decreasing, we should analyze both the function [tex]\( S(t) \)[/tex] and its derivative [tex]\(\frac{dS}{dt}\)[/tex].
1. The given function [tex]\( S(t) = 100,000 e^{-0.8 t} \)[/tex] is an exponential decay model. This is because it involves an exponential function with a negative exponent, representing a decreasing trend over time.
2. The derivative [tex]\(\frac{dS}{dt} = -80,000 e^{-0.8 t}\)[/tex] is our key indicator. Notice the following about the derivative:
- The term [tex]\( e^{-0.8 t} \)[/tex] is always positive for any value of [tex]\( t \geq 0 \)[/tex].
- The coefficient [tex]\(-80,000\)[/tex] makes [tex]\(\frac{dS}{dt}\)[/tex] always negative.
Since the derivative [tex]\(\frac{dS}{dt}\)[/tex] is always negative, it indicates that [tex]\( S(t) \)[/tex] is a decreasing function. This tells us that sales are continuously dropping over time.
Thus, the correct statements are:
- The given function is an exponential decay model.
- Additionally, the derivative of the given function is always negative, indicating sales are decreasing.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.