Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To address the given questions step-by-step:
### Part (a)
We need to find the rate of change of [tex]\( S(t) \)[/tex], which is represented by the derivative of [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
Given the function:
[tex]\[ S(t) = 100,000 e^{-0.8 t} \][/tex]
1. To find the derivative [tex]\(\frac{dS}{dt}\)[/tex], we must differentiate [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
2. Using the chain rule, the differentiation of an exponential function [tex]\( a e^{kt} \)[/tex] with respect to [tex]\( t \)[/tex] is [tex]\( a k e^{kt} \)[/tex].
Thus,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot \frac{d}{dt}\left( e^{-0.8 t} \right) \][/tex]
3. Applying the chain rule to [tex]\( e^{-0.8 t} \)[/tex], we get:
[tex]\[ \frac{d}{dt}\left( e^{-0.8 t} \right) = -0.8 e^{-0.8 t} \][/tex]
Therefore,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot (-0.8) e^{-0.8 t} \][/tex]
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
Hence, the rate of change of [tex]\( S \)[/tex] is:
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
### Part (b)
To determine whether sales are decreasing, we should analyze both the function [tex]\( S(t) \)[/tex] and its derivative [tex]\(\frac{dS}{dt}\)[/tex].
1. The given function [tex]\( S(t) = 100,000 e^{-0.8 t} \)[/tex] is an exponential decay model. This is because it involves an exponential function with a negative exponent, representing a decreasing trend over time.
2. The derivative [tex]\(\frac{dS}{dt} = -80,000 e^{-0.8 t}\)[/tex] is our key indicator. Notice the following about the derivative:
- The term [tex]\( e^{-0.8 t} \)[/tex] is always positive for any value of [tex]\( t \geq 0 \)[/tex].
- The coefficient [tex]\(-80,000\)[/tex] makes [tex]\(\frac{dS}{dt}\)[/tex] always negative.
Since the derivative [tex]\(\frac{dS}{dt}\)[/tex] is always negative, it indicates that [tex]\( S(t) \)[/tex] is a decreasing function. This tells us that sales are continuously dropping over time.
Thus, the correct statements are:
- The given function is an exponential decay model.
- Additionally, the derivative of the given function is always negative, indicating sales are decreasing.
### Part (a)
We need to find the rate of change of [tex]\( S(t) \)[/tex], which is represented by the derivative of [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
Given the function:
[tex]\[ S(t) = 100,000 e^{-0.8 t} \][/tex]
1. To find the derivative [tex]\(\frac{dS}{dt}\)[/tex], we must differentiate [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
2. Using the chain rule, the differentiation of an exponential function [tex]\( a e^{kt} \)[/tex] with respect to [tex]\( t \)[/tex] is [tex]\( a k e^{kt} \)[/tex].
Thus,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot \frac{d}{dt}\left( e^{-0.8 t} \right) \][/tex]
3. Applying the chain rule to [tex]\( e^{-0.8 t} \)[/tex], we get:
[tex]\[ \frac{d}{dt}\left( e^{-0.8 t} \right) = -0.8 e^{-0.8 t} \][/tex]
Therefore,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot (-0.8) e^{-0.8 t} \][/tex]
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
Hence, the rate of change of [tex]\( S \)[/tex] is:
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
### Part (b)
To determine whether sales are decreasing, we should analyze both the function [tex]\( S(t) \)[/tex] and its derivative [tex]\(\frac{dS}{dt}\)[/tex].
1. The given function [tex]\( S(t) = 100,000 e^{-0.8 t} \)[/tex] is an exponential decay model. This is because it involves an exponential function with a negative exponent, representing a decreasing trend over time.
2. The derivative [tex]\(\frac{dS}{dt} = -80,000 e^{-0.8 t}\)[/tex] is our key indicator. Notice the following about the derivative:
- The term [tex]\( e^{-0.8 t} \)[/tex] is always positive for any value of [tex]\( t \geq 0 \)[/tex].
- The coefficient [tex]\(-80,000\)[/tex] makes [tex]\(\frac{dS}{dt}\)[/tex] always negative.
Since the derivative [tex]\(\frac{dS}{dt}\)[/tex] is always negative, it indicates that [tex]\( S(t) \)[/tex] is a decreasing function. This tells us that sales are continuously dropping over time.
Thus, the correct statements are:
- The given function is an exponential decay model.
- Additionally, the derivative of the given function is always negative, indicating sales are decreasing.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.