Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's solve this problem step-by-step.
First, we need to define the given data from the table:
- The total number of pedestrian deaths: [tex]\(985\)[/tex]
- The number of cases where the pedestrian was intoxicated: [tex]\(54 + 233 = 287\)[/tex]
- The number of cases where the driver was not intoxicated: [tex]\(233 + 625 = 858\)[/tex]
Now, let's define the events we are interested in:
1. Let [tex]\(A\)[/tex] be the event that the pedestrian was intoxicated.
2. Let [tex]\(B\)[/tex] be the event that the driver was not intoxicated.
We want to find the probability of [tex]\(A \cup B\)[/tex], that is, the probability that the pedestrian was intoxicated or the driver was not intoxicated.
We use the principle of inclusion and exclusion to find this probability:
[tex]\[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \][/tex]
Where:
- [tex]\(P(A)\)[/tex] is the probability that the pedestrian was intoxicated.
- [tex]\(P(B)\)[/tex] is the probability that the driver was not intoxicated.
- [tex]\(P(A \cap B)\)[/tex] is the probability that both the pedestrian was intoxicated and the driver was not intoxicated.
Next, we calculate these probabilities:
1. The probability that the pedestrian was intoxicated:
[tex]\[ P(A) = \frac{\text{Number of intoxicated pedestrians}}{\text{Total pedestrian deaths}} = \frac{287}{985} \][/tex]
2. The probability that the driver was not intoxicated:
[tex]\[ P(B) = \frac{\text{Number of cases where driver not intoxicated}}{\text{Total pedestrian deaths}} = \frac{858}{985} \][/tex]
3. The probability that both the pedestrian was intoxicated and the driver was not intoxicated:
[tex]\[ P(A \cap B) = \frac{\text{Number of cases where both pedestrian was intoxicated and driver was not intoxicated}}{\text{Total pedestrian deaths}} = \frac{233}{985} \][/tex]
Substitute these values into the formula for [tex]\(P(A \cup B)\)[/tex]:
[tex]\[ P(A \cup B) = \frac{287}{985} + \frac{858}{985} - \frac{233}{985} \][/tex]
Combine and simplify the fractions:
[tex]\[ P(A \cup B) = \frac{287 + 858 - 233}{985} = \frac{912}{985} \][/tex]
Convert to decimal and round to 4 decimal places:
[tex]\[ P(A \cup B) \approx 0.9259 \][/tex]
Thus, the probability that the pedestrian was intoxicated or the driver was not intoxicated is:
[tex]\[ \boxed{0.9259} \][/tex]
First, we need to define the given data from the table:
- The total number of pedestrian deaths: [tex]\(985\)[/tex]
- The number of cases where the pedestrian was intoxicated: [tex]\(54 + 233 = 287\)[/tex]
- The number of cases where the driver was not intoxicated: [tex]\(233 + 625 = 858\)[/tex]
Now, let's define the events we are interested in:
1. Let [tex]\(A\)[/tex] be the event that the pedestrian was intoxicated.
2. Let [tex]\(B\)[/tex] be the event that the driver was not intoxicated.
We want to find the probability of [tex]\(A \cup B\)[/tex], that is, the probability that the pedestrian was intoxicated or the driver was not intoxicated.
We use the principle of inclusion and exclusion to find this probability:
[tex]\[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \][/tex]
Where:
- [tex]\(P(A)\)[/tex] is the probability that the pedestrian was intoxicated.
- [tex]\(P(B)\)[/tex] is the probability that the driver was not intoxicated.
- [tex]\(P(A \cap B)\)[/tex] is the probability that both the pedestrian was intoxicated and the driver was not intoxicated.
Next, we calculate these probabilities:
1. The probability that the pedestrian was intoxicated:
[tex]\[ P(A) = \frac{\text{Number of intoxicated pedestrians}}{\text{Total pedestrian deaths}} = \frac{287}{985} \][/tex]
2. The probability that the driver was not intoxicated:
[tex]\[ P(B) = \frac{\text{Number of cases where driver not intoxicated}}{\text{Total pedestrian deaths}} = \frac{858}{985} \][/tex]
3. The probability that both the pedestrian was intoxicated and the driver was not intoxicated:
[tex]\[ P(A \cap B) = \frac{\text{Number of cases where both pedestrian was intoxicated and driver was not intoxicated}}{\text{Total pedestrian deaths}} = \frac{233}{985} \][/tex]
Substitute these values into the formula for [tex]\(P(A \cup B)\)[/tex]:
[tex]\[ P(A \cup B) = \frac{287}{985} + \frac{858}{985} - \frac{233}{985} \][/tex]
Combine and simplify the fractions:
[tex]\[ P(A \cup B) = \frac{287 + 858 - 233}{985} = \frac{912}{985} \][/tex]
Convert to decimal and round to 4 decimal places:
[tex]\[ P(A \cup B) \approx 0.9259 \][/tex]
Thus, the probability that the pedestrian was intoxicated or the driver was not intoxicated is:
[tex]\[ \boxed{0.9259} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.