Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the value of the expression [tex]\(\left(6^{1/4}\right) \cdot \left(6^{1/4}\right) \cdot \left(6^{1/4}\right) \cdot \left(6^{1/4}\right)\)[/tex], follow these steps:
1. Identify the Multiplication Property of Exponents:
When you multiply terms with the same base, you add their exponents:
[tex]\[ a^m \cdot a^n = a^{m+n} \][/tex]
2. Apply the Property:
The expression can be rewritten as:
[tex]\[ (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \][/tex]
3. Combine the Exponents:
Since all the exponents are [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ (6^{1/4 + 1/4 + 1/4 + 1/4}) = 6^{1/4 \cdot 4} \][/tex]
4. Simplify the Exponent:
Adding the exponents together:
[tex]\[ 1/4 + 1/4 + 1/4 + 1/4 = 1 \][/tex]
So, the exponent becomes:
[tex]\[ 6^{1} \][/tex]
5. Calculate the Final Result:
[tex]\(6^1\)[/tex] simplifies to:
[tex]\[ 6 \][/tex]
Therefore, the value of the expression [tex]\(\left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right)\)[/tex] is [tex]\(6\)[/tex].
The correct answer is:
[tex]\[ \boxed{6} \][/tex]
1. Identify the Multiplication Property of Exponents:
When you multiply terms with the same base, you add their exponents:
[tex]\[ a^m \cdot a^n = a^{m+n} \][/tex]
2. Apply the Property:
The expression can be rewritten as:
[tex]\[ (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \][/tex]
3. Combine the Exponents:
Since all the exponents are [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ (6^{1/4 + 1/4 + 1/4 + 1/4}) = 6^{1/4 \cdot 4} \][/tex]
4. Simplify the Exponent:
Adding the exponents together:
[tex]\[ 1/4 + 1/4 + 1/4 + 1/4 = 1 \][/tex]
So, the exponent becomes:
[tex]\[ 6^{1} \][/tex]
5. Calculate the Final Result:
[tex]\(6^1\)[/tex] simplifies to:
[tex]\[ 6 \][/tex]
Therefore, the value of the expression [tex]\(\left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right)\)[/tex] is [tex]\(6\)[/tex].
The correct answer is:
[tex]\[ \boxed{6} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.