Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the value of the expression [tex]\(\left(6^{1/4}\right) \cdot \left(6^{1/4}\right) \cdot \left(6^{1/4}\right) \cdot \left(6^{1/4}\right)\)[/tex], follow these steps:
1. Identify the Multiplication Property of Exponents:
When you multiply terms with the same base, you add their exponents:
[tex]\[ a^m \cdot a^n = a^{m+n} \][/tex]
2. Apply the Property:
The expression can be rewritten as:
[tex]\[ (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \][/tex]
3. Combine the Exponents:
Since all the exponents are [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ (6^{1/4 + 1/4 + 1/4 + 1/4}) = 6^{1/4 \cdot 4} \][/tex]
4. Simplify the Exponent:
Adding the exponents together:
[tex]\[ 1/4 + 1/4 + 1/4 + 1/4 = 1 \][/tex]
So, the exponent becomes:
[tex]\[ 6^{1} \][/tex]
5. Calculate the Final Result:
[tex]\(6^1\)[/tex] simplifies to:
[tex]\[ 6 \][/tex]
Therefore, the value of the expression [tex]\(\left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right)\)[/tex] is [tex]\(6\)[/tex].
The correct answer is:
[tex]\[ \boxed{6} \][/tex]
1. Identify the Multiplication Property of Exponents:
When you multiply terms with the same base, you add their exponents:
[tex]\[ a^m \cdot a^n = a^{m+n} \][/tex]
2. Apply the Property:
The expression can be rewritten as:
[tex]\[ (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \cdot (6^{1/4}) \][/tex]
3. Combine the Exponents:
Since all the exponents are [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ (6^{1/4 + 1/4 + 1/4 + 1/4}) = 6^{1/4 \cdot 4} \][/tex]
4. Simplify the Exponent:
Adding the exponents together:
[tex]\[ 1/4 + 1/4 + 1/4 + 1/4 = 1 \][/tex]
So, the exponent becomes:
[tex]\[ 6^{1} \][/tex]
5. Calculate the Final Result:
[tex]\(6^1\)[/tex] simplifies to:
[tex]\[ 6 \][/tex]
Therefore, the value of the expression [tex]\(\left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right) \cdot \left(6^{1 / 4}\right)\)[/tex] is [tex]\(6\)[/tex].
The correct answer is:
[tex]\[ \boxed{6} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.