Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the base of the exponential function, which follows a pattern of decay through the points [tex]\((-2, 25)\)[/tex], [tex]\((-1, 5)\)[/tex], and [tex]\((0, 1)\)[/tex], we start by recognizing that the exponential function is of the form [tex]\( y = a \cdot b^x \)[/tex], where [tex]\(a\)[/tex] is a constant and [tex]\(b\)[/tex] is the base we need to find.
Using the given points, we can set up equations based on the form [tex]\( y = a \cdot b^x \)[/tex]:
1. For the point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = a \cdot b^{-2} \][/tex]
2. For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = a \cdot b^{-1} \][/tex]
3. For the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Next, we simplify these equations to find the base [tex]\(b\)[/tex]:
First, from the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Since any number raised to the power of 0 is 1, [tex]\(b^0 = 1\)[/tex]. Thus, we have:
[tex]\[ 1 = a \cdot 1 \][/tex]
This simplifies to:
[tex]\[ a = 1 \][/tex]
Now, substitute [tex]\(a = 1\)[/tex] into the equations derived from the other points.
For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = 1 \cdot b^{-1} \][/tex]
[tex]\[ 5 = \frac{1}{b} \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = \frac{1}{5} \][/tex]
To confirm, we can use the remaining point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = 1 \cdot b^{-2} \][/tex]
[tex]\[ 25 = \left(\frac{1}{5}\right)^{-2} \][/tex]
Since [tex]\(\left(\frac{1}{5}\right)^{-2} = 5^2 = 25\)[/tex], the equation holds true.
Therefore, the base of the exponential function is:
[tex]\[ b = \frac{1}{5} \][/tex]
Using the given points, we can set up equations based on the form [tex]\( y = a \cdot b^x \)[/tex]:
1. For the point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = a \cdot b^{-2} \][/tex]
2. For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = a \cdot b^{-1} \][/tex]
3. For the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Next, we simplify these equations to find the base [tex]\(b\)[/tex]:
First, from the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Since any number raised to the power of 0 is 1, [tex]\(b^0 = 1\)[/tex]. Thus, we have:
[tex]\[ 1 = a \cdot 1 \][/tex]
This simplifies to:
[tex]\[ a = 1 \][/tex]
Now, substitute [tex]\(a = 1\)[/tex] into the equations derived from the other points.
For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = 1 \cdot b^{-1} \][/tex]
[tex]\[ 5 = \frac{1}{b} \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = \frac{1}{5} \][/tex]
To confirm, we can use the remaining point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = 1 \cdot b^{-2} \][/tex]
[tex]\[ 25 = \left(\frac{1}{5}\right)^{-2} \][/tex]
Since [tex]\(\left(\frac{1}{5}\right)^{-2} = 5^2 = 25\)[/tex], the equation holds true.
Therefore, the base of the exponential function is:
[tex]\[ b = \frac{1}{5} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.