Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the base of the exponential function, which follows a pattern of decay through the points [tex]\((-2, 25)\)[/tex], [tex]\((-1, 5)\)[/tex], and [tex]\((0, 1)\)[/tex], we start by recognizing that the exponential function is of the form [tex]\( y = a \cdot b^x \)[/tex], where [tex]\(a\)[/tex] is a constant and [tex]\(b\)[/tex] is the base we need to find.
Using the given points, we can set up equations based on the form [tex]\( y = a \cdot b^x \)[/tex]:
1. For the point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = a \cdot b^{-2} \][/tex]
2. For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = a \cdot b^{-1} \][/tex]
3. For the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Next, we simplify these equations to find the base [tex]\(b\)[/tex]:
First, from the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Since any number raised to the power of 0 is 1, [tex]\(b^0 = 1\)[/tex]. Thus, we have:
[tex]\[ 1 = a \cdot 1 \][/tex]
This simplifies to:
[tex]\[ a = 1 \][/tex]
Now, substitute [tex]\(a = 1\)[/tex] into the equations derived from the other points.
For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = 1 \cdot b^{-1} \][/tex]
[tex]\[ 5 = \frac{1}{b} \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = \frac{1}{5} \][/tex]
To confirm, we can use the remaining point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = 1 \cdot b^{-2} \][/tex]
[tex]\[ 25 = \left(\frac{1}{5}\right)^{-2} \][/tex]
Since [tex]\(\left(\frac{1}{5}\right)^{-2} = 5^2 = 25\)[/tex], the equation holds true.
Therefore, the base of the exponential function is:
[tex]\[ b = \frac{1}{5} \][/tex]
Using the given points, we can set up equations based on the form [tex]\( y = a \cdot b^x \)[/tex]:
1. For the point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = a \cdot b^{-2} \][/tex]
2. For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = a \cdot b^{-1} \][/tex]
3. For the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Next, we simplify these equations to find the base [tex]\(b\)[/tex]:
First, from the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Since any number raised to the power of 0 is 1, [tex]\(b^0 = 1\)[/tex]. Thus, we have:
[tex]\[ 1 = a \cdot 1 \][/tex]
This simplifies to:
[tex]\[ a = 1 \][/tex]
Now, substitute [tex]\(a = 1\)[/tex] into the equations derived from the other points.
For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = 1 \cdot b^{-1} \][/tex]
[tex]\[ 5 = \frac{1}{b} \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = \frac{1}{5} \][/tex]
To confirm, we can use the remaining point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = 1 \cdot b^{-2} \][/tex]
[tex]\[ 25 = \left(\frac{1}{5}\right)^{-2} \][/tex]
Since [tex]\(\left(\frac{1}{5}\right)^{-2} = 5^2 = 25\)[/tex], the equation holds true.
Therefore, the base of the exponential function is:
[tex]\[ b = \frac{1}{5} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.