Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the base of the exponential function, which follows a pattern of decay through the points [tex]\((-2, 25)\)[/tex], [tex]\((-1, 5)\)[/tex], and [tex]\((0, 1)\)[/tex], we start by recognizing that the exponential function is of the form [tex]\( y = a \cdot b^x \)[/tex], where [tex]\(a\)[/tex] is a constant and [tex]\(b\)[/tex] is the base we need to find.
Using the given points, we can set up equations based on the form [tex]\( y = a \cdot b^x \)[/tex]:
1. For the point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = a \cdot b^{-2} \][/tex]
2. For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = a \cdot b^{-1} \][/tex]
3. For the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Next, we simplify these equations to find the base [tex]\(b\)[/tex]:
First, from the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Since any number raised to the power of 0 is 1, [tex]\(b^0 = 1\)[/tex]. Thus, we have:
[tex]\[ 1 = a \cdot 1 \][/tex]
This simplifies to:
[tex]\[ a = 1 \][/tex]
Now, substitute [tex]\(a = 1\)[/tex] into the equations derived from the other points.
For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = 1 \cdot b^{-1} \][/tex]
[tex]\[ 5 = \frac{1}{b} \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = \frac{1}{5} \][/tex]
To confirm, we can use the remaining point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = 1 \cdot b^{-2} \][/tex]
[tex]\[ 25 = \left(\frac{1}{5}\right)^{-2} \][/tex]
Since [tex]\(\left(\frac{1}{5}\right)^{-2} = 5^2 = 25\)[/tex], the equation holds true.
Therefore, the base of the exponential function is:
[tex]\[ b = \frac{1}{5} \][/tex]
Using the given points, we can set up equations based on the form [tex]\( y = a \cdot b^x \)[/tex]:
1. For the point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = a \cdot b^{-2} \][/tex]
2. For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = a \cdot b^{-1} \][/tex]
3. For the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Next, we simplify these equations to find the base [tex]\(b\)[/tex]:
First, from the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Since any number raised to the power of 0 is 1, [tex]\(b^0 = 1\)[/tex]. Thus, we have:
[tex]\[ 1 = a \cdot 1 \][/tex]
This simplifies to:
[tex]\[ a = 1 \][/tex]
Now, substitute [tex]\(a = 1\)[/tex] into the equations derived from the other points.
For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = 1 \cdot b^{-1} \][/tex]
[tex]\[ 5 = \frac{1}{b} \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ b = \frac{1}{5} \][/tex]
To confirm, we can use the remaining point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = 1 \cdot b^{-2} \][/tex]
[tex]\[ 25 = \left(\frac{1}{5}\right)^{-2} \][/tex]
Since [tex]\(\left(\frac{1}{5}\right)^{-2} = 5^2 = 25\)[/tex], the equation holds true.
Therefore, the base of the exponential function is:
[tex]\[ b = \frac{1}{5} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.