Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
## a. Write the statement in symbolic form.
We are given the statement:
- "You did not mow the lawn or you left the room a mess."
Let's assign letters to the simple statements:
- Let [tex]\( p \)[/tex] be "You did not mow the lawn."
- Let [tex]\( q \)[/tex] be "You left the room a mess."
The statement to symbolize is:
- "You did not mow the lawn or you left the room a mess."
In symbolic form, this would be written as:
[tex]\[ \text{Answer: } \ p \vee q \][/tex]
### Choosing the correct answer:
A. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you did not mow the lawn AND you left the room a mess." -> Incorrect
B. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you mowed the lawn AND you left the room a mess." -> Incorrect
C. [tex]\( p \vee q \)[/tex]: This represents "You did not mow the lawn OR you left the room a mess." -> Correct
D. [tex]\(\sim p \vee q\)[/tex]: This represents "It is not the case that you mowed the lawn OR you left the room a mess." -> Incorrect
The correct answer is C.
## b. Construct a truth table for the symbolic statement in part (a).
Let's create the truth table for [tex]\( p \vee q \)[/tex]:
| [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( \sim p \)[/tex] | [tex]\( \sim p \vee q \)[/tex] |
| ------ | ------ | ------ | ------ | ------ | ------ |
| T | T | F | T | F | T |
| T | F | F | F | T | F |
| F | T | T | T | F | T |
| F | F | T | F | T | T |
We are given the statement:
- "You did not mow the lawn or you left the room a mess."
Let's assign letters to the simple statements:
- Let [tex]\( p \)[/tex] be "You did not mow the lawn."
- Let [tex]\( q \)[/tex] be "You left the room a mess."
The statement to symbolize is:
- "You did not mow the lawn or you left the room a mess."
In symbolic form, this would be written as:
[tex]\[ \text{Answer: } \ p \vee q \][/tex]
### Choosing the correct answer:
A. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you did not mow the lawn AND you left the room a mess." -> Incorrect
B. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you mowed the lawn AND you left the room a mess." -> Incorrect
C. [tex]\( p \vee q \)[/tex]: This represents "You did not mow the lawn OR you left the room a mess." -> Correct
D. [tex]\(\sim p \vee q\)[/tex]: This represents "It is not the case that you mowed the lawn OR you left the room a mess." -> Incorrect
The correct answer is C.
## b. Construct a truth table for the symbolic statement in part (a).
Let's create the truth table for [tex]\( p \vee q \)[/tex]:
| [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( \sim p \)[/tex] | [tex]\( \sim p \vee q \)[/tex] |
| ------ | ------ | ------ | ------ | ------ | ------ |
| T | T | F | T | F | T |
| T | F | F | F | T | F |
| F | T | T | T | F | T |
| F | F | T | F | T | T |
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.