Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
## a. Write the statement in symbolic form.
We are given the statement:
- "You did not mow the lawn or you left the room a mess."
Let's assign letters to the simple statements:
- Let [tex]\( p \)[/tex] be "You did not mow the lawn."
- Let [tex]\( q \)[/tex] be "You left the room a mess."
The statement to symbolize is:
- "You did not mow the lawn or you left the room a mess."
In symbolic form, this would be written as:
[tex]\[ \text{Answer: } \ p \vee q \][/tex]
### Choosing the correct answer:
A. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you did not mow the lawn AND you left the room a mess." -> Incorrect
B. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you mowed the lawn AND you left the room a mess." -> Incorrect
C. [tex]\( p \vee q \)[/tex]: This represents "You did not mow the lawn OR you left the room a mess." -> Correct
D. [tex]\(\sim p \vee q\)[/tex]: This represents "It is not the case that you mowed the lawn OR you left the room a mess." -> Incorrect
The correct answer is C.
## b. Construct a truth table for the symbolic statement in part (a).
Let's create the truth table for [tex]\( p \vee q \)[/tex]:
| [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( \sim p \)[/tex] | [tex]\( \sim p \vee q \)[/tex] |
| ------ | ------ | ------ | ------ | ------ | ------ |
| T | T | F | T | F | T |
| T | F | F | F | T | F |
| F | T | T | T | F | T |
| F | F | T | F | T | T |
We are given the statement:
- "You did not mow the lawn or you left the room a mess."
Let's assign letters to the simple statements:
- Let [tex]\( p \)[/tex] be "You did not mow the lawn."
- Let [tex]\( q \)[/tex] be "You left the room a mess."
The statement to symbolize is:
- "You did not mow the lawn or you left the room a mess."
In symbolic form, this would be written as:
[tex]\[ \text{Answer: } \ p \vee q \][/tex]
### Choosing the correct answer:
A. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you did not mow the lawn AND you left the room a mess." -> Incorrect
B. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you mowed the lawn AND you left the room a mess." -> Incorrect
C. [tex]\( p \vee q \)[/tex]: This represents "You did not mow the lawn OR you left the room a mess." -> Correct
D. [tex]\(\sim p \vee q\)[/tex]: This represents "It is not the case that you mowed the lawn OR you left the room a mess." -> Incorrect
The correct answer is C.
## b. Construct a truth table for the symbolic statement in part (a).
Let's create the truth table for [tex]\( p \vee q \)[/tex]:
| [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( \sim p \)[/tex] | [tex]\( \sim p \vee q \)[/tex] |
| ------ | ------ | ------ | ------ | ------ | ------ |
| T | T | F | T | F | T |
| T | F | F | F | T | F |
| F | T | T | T | F | T |
| F | F | T | F | T | T |
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.