Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
## a. Write the statement in symbolic form.
We are given the statement:
- "You did not mow the lawn or you left the room a mess."
Let's assign letters to the simple statements:
- Let [tex]\( p \)[/tex] be "You did not mow the lawn."
- Let [tex]\( q \)[/tex] be "You left the room a mess."
The statement to symbolize is:
- "You did not mow the lawn or you left the room a mess."
In symbolic form, this would be written as:
[tex]\[ \text{Answer: } \ p \vee q \][/tex]
### Choosing the correct answer:
A. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you did not mow the lawn AND you left the room a mess." -> Incorrect
B. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you mowed the lawn AND you left the room a mess." -> Incorrect
C. [tex]\( p \vee q \)[/tex]: This represents "You did not mow the lawn OR you left the room a mess." -> Correct
D. [tex]\(\sim p \vee q\)[/tex]: This represents "It is not the case that you mowed the lawn OR you left the room a mess." -> Incorrect
The correct answer is C.
## b. Construct a truth table for the symbolic statement in part (a).
Let's create the truth table for [tex]\( p \vee q \)[/tex]:
| [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( \sim p \)[/tex] | [tex]\( \sim p \vee q \)[/tex] |
| ------ | ------ | ------ | ------ | ------ | ------ |
| T | T | F | T | F | T |
| T | F | F | F | T | F |
| F | T | T | T | F | T |
| F | F | T | F | T | T |
We are given the statement:
- "You did not mow the lawn or you left the room a mess."
Let's assign letters to the simple statements:
- Let [tex]\( p \)[/tex] be "You did not mow the lawn."
- Let [tex]\( q \)[/tex] be "You left the room a mess."
The statement to symbolize is:
- "You did not mow the lawn or you left the room a mess."
In symbolic form, this would be written as:
[tex]\[ \text{Answer: } \ p \vee q \][/tex]
### Choosing the correct answer:
A. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you did not mow the lawn AND you left the room a mess." -> Incorrect
B. [tex]\(\sim p \wedge q\)[/tex]: This represents "It is not the case that you mowed the lawn AND you left the room a mess." -> Incorrect
C. [tex]\( p \vee q \)[/tex]: This represents "You did not mow the lawn OR you left the room a mess." -> Correct
D. [tex]\(\sim p \vee q\)[/tex]: This represents "It is not the case that you mowed the lawn OR you left the room a mess." -> Incorrect
The correct answer is C.
## b. Construct a truth table for the symbolic statement in part (a).
Let's create the truth table for [tex]\( p \vee q \)[/tex]:
| [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( p \)[/tex] | [tex]\( q \)[/tex] | [tex]\( \sim p \)[/tex] | [tex]\( \sim p \vee q \)[/tex] |
| ------ | ------ | ------ | ------ | ------ | ------ |
| T | T | F | T | F | T |
| T | F | F | F | T | F |
| F | T | T | T | F | T |
| F | F | T | F | T | T |
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.