At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To model the exponential decay of ibuprofen in an adult's system, we need a function that relates the amount of ibuprofen remaining, [tex]\( m(t) \)[/tex], to the time in hours, [tex]\( t \)[/tex].
Let's break down the problem step-by-step:
1. Initial Dose: The initial amount of ibuprofen taken is 400 milligrams (mg). This means at [tex]\( t = 0 \)[/tex] (the moment the adult takes the dose), [tex]\( m(0) = 400 \)[/tex].
2. Decay Rate: Each hour, the amount of ibuprofen decreases by one-fourth. This implies that after each hour, only [tex]\( \frac{1}{4} \)[/tex] (or 25%) of the previous amount remains. Therefore, we can conclude that the decay rate (fraction of the amount that remains from hour to hour) is [tex]\( \frac{1}{4} \)[/tex].
3. Exponential Function Form: Since this is an exponential decay problem, the general form of the function is:
[tex]\[ m(t) = \text{initial amount} \times (\text{decay rate})^t \][/tex]
4. Substituting Values: The initial amount is 400 mg, and the decay rate is [tex]\( \frac{1}{4} \)[/tex]. Placing these values into the general form, we get:
[tex]\[ m(t) = 400 \times \left(\frac{1}{4}\right)^t \][/tex]
Therefore, the function that models the exponential decay of ibuprofen in the person's system is:
[tex]\[ m(t) = 400 \cdot \left(\frac{1}{4}\right)^t \][/tex]
So the correct function among the given options is:
[tex]\[ m(t) = 400 \cdot \left(\frac{1}{4}\right)^t \][/tex]
Let's break down the problem step-by-step:
1. Initial Dose: The initial amount of ibuprofen taken is 400 milligrams (mg). This means at [tex]\( t = 0 \)[/tex] (the moment the adult takes the dose), [tex]\( m(0) = 400 \)[/tex].
2. Decay Rate: Each hour, the amount of ibuprofen decreases by one-fourth. This implies that after each hour, only [tex]\( \frac{1}{4} \)[/tex] (or 25%) of the previous amount remains. Therefore, we can conclude that the decay rate (fraction of the amount that remains from hour to hour) is [tex]\( \frac{1}{4} \)[/tex].
3. Exponential Function Form: Since this is an exponential decay problem, the general form of the function is:
[tex]\[ m(t) = \text{initial amount} \times (\text{decay rate})^t \][/tex]
4. Substituting Values: The initial amount is 400 mg, and the decay rate is [tex]\( \frac{1}{4} \)[/tex]. Placing these values into the general form, we get:
[tex]\[ m(t) = 400 \times \left(\frac{1}{4}\right)^t \][/tex]
Therefore, the function that models the exponential decay of ibuprofen in the person's system is:
[tex]\[ m(t) = 400 \cdot \left(\frac{1}{4}\right)^t \][/tex]
So the correct function among the given options is:
[tex]\[ m(t) = 400 \cdot \left(\frac{1}{4}\right)^t \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.