Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

A mosquito control truck is spraying pesticides to control the population of mosquitoes in an area. The function [tex] p(t) = 15,000 \left( \frac{1}{7} \right)^t [/tex] represents the population of mosquitoes, [tex] p(t) [/tex], after each application of pesticides, [tex] t [/tex]. Does the function represent growth or decay?

A. The function represents exponential growth because the base equals 15,000.
B. The function represents exponential decay because the base equals 15,000.
C. The function represents exponential growth because the base equals [tex] \frac{1}{7} [/tex].
D. The function represents exponential decay because the base equals [tex] \frac{1}{7} [/tex].

Sagot :

To determine whether the function [tex]\(p(t) = 15,000 \left(\frac{1}{7}\right)^t\)[/tex] represents growth or decay, we need to focus on the base of the exponential expression.

1. Observe the given function:
[tex]\[ p(t) = 15,000 \left(\frac{1}{7}\right)^t \][/tex]

2. Identify the base of the exponential term:
[tex]\[ \left(\frac{1}{7}\right)^t \][/tex]

3. Determine whether the base indicates growth or decay:
- Exponential functions generally have the form [tex]\(a \cdot b^t\)[/tex].
- If the base [tex]\(b\)[/tex] (in this case, [tex]\(\frac{1}{7}\)[/tex]) is greater than 1, the function represents exponential growth.
- If the base [tex]\(b\)[/tex] is between 0 and 1, the function represents exponential decay.

4. Evaluate the base [tex]\(\frac{1}{7}\)[/tex]:
[tex]\[ \frac{1}{7} \approx 0.142857 \][/tex]
Since [tex]\(\frac{1}{7}\)[/tex] is less than 1 but greater than 0, it falls into the range that signifies decay.

5. Conclusion:
The function represents exponential decay because the base equals [tex]\(\frac{1}{7}\)[/tex].

Therefore, the correct conclusion is:
[tex]\[ \boxed{\text{The function represents exponential decay because the base equals } \frac{1}{7}.} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.