Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which of the given choices result in real numbers, we need to analyze each one individually, focusing on the properties of exponents and roots.
### Choice A: [tex]\((-32)^{1/6}\)[/tex]
- Here, we are taking the sixth root of [tex]\(-32\)[/tex].
- When raising a negative number to a fractional power with an even denominator, the result is an imaginary number because even roots of negative numbers are not defined in the real number system.
- Therefore, [tex]\((-32)^{1/6}\)[/tex] is not a real number.
### Choice B: [tex]\((-10)^{1/4}\)[/tex]
- Here, we are taking the fourth root of [tex]\(-10\)[/tex].
- Similar to Choice A, we are dealing with an even root.
- A negative number raised to a power with an even denominator results in an imaginary number.
- Therefore, [tex]\((-10)^{1/4}\)[/tex] is not a real number.
### Choice C: [tex]\((-4)^{1/3}\)[/tex]
- Here, we are taking the cube root of [tex]\(-4\)[/tex].
- When raising a negative number to a fractional power with an odd denominator, the result is a real number because odd roots of negative numbers are defined in the real number system.
- Therefore, [tex]\((-4)^{1/3}\)[/tex] is a real number.
### Choice D: [tex]\((-16)^{1/5}\)[/tex]
- Here, we are taking the fifth root of [tex]\(-16\)[/tex].
- Similar to Choice C, we are dealing with an odd root.
- An odd root of a negative number is a real number.
- Therefore, [tex]\((-16)^{1/5}\)[/tex] is a real number.
### Summary
Based on the analysis, the choices that result in real numbers are:
- [tex]\( \boxed{C} \)[/tex] [tex]\((-4)^{1/3}\)[/tex]
- [tex]\( \boxed{D} \)[/tex] [tex]\((-16)^{1/5}\)[/tex]
So the correct answers are:
[tex]\[ \boxed{\text{C and D}} \][/tex]
### Choice A: [tex]\((-32)^{1/6}\)[/tex]
- Here, we are taking the sixth root of [tex]\(-32\)[/tex].
- When raising a negative number to a fractional power with an even denominator, the result is an imaginary number because even roots of negative numbers are not defined in the real number system.
- Therefore, [tex]\((-32)^{1/6}\)[/tex] is not a real number.
### Choice B: [tex]\((-10)^{1/4}\)[/tex]
- Here, we are taking the fourth root of [tex]\(-10\)[/tex].
- Similar to Choice A, we are dealing with an even root.
- A negative number raised to a power with an even denominator results in an imaginary number.
- Therefore, [tex]\((-10)^{1/4}\)[/tex] is not a real number.
### Choice C: [tex]\((-4)^{1/3}\)[/tex]
- Here, we are taking the cube root of [tex]\(-4\)[/tex].
- When raising a negative number to a fractional power with an odd denominator, the result is a real number because odd roots of negative numbers are defined in the real number system.
- Therefore, [tex]\((-4)^{1/3}\)[/tex] is a real number.
### Choice D: [tex]\((-16)^{1/5}\)[/tex]
- Here, we are taking the fifth root of [tex]\(-16\)[/tex].
- Similar to Choice C, we are dealing with an odd root.
- An odd root of a negative number is a real number.
- Therefore, [tex]\((-16)^{1/5}\)[/tex] is a real number.
### Summary
Based on the analysis, the choices that result in real numbers are:
- [tex]\( \boxed{C} \)[/tex] [tex]\((-4)^{1/3}\)[/tex]
- [tex]\( \boxed{D} \)[/tex] [tex]\((-16)^{1/5}\)[/tex]
So the correct answers are:
[tex]\[ \boxed{\text{C and D}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.