Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the expression [tex]\( 64^{1/3} \)[/tex], we need to find the cube root of 64. This can be understood as finding a number [tex]\( x \)[/tex] such that [tex]\( x^3 = 64 \)[/tex].
First, let's recall that the cube root of a number is the value that, when multiplied by itself three times, gives the original number. Symbolically, for any number [tex]\( a \)[/tex]:
[tex]\[ a^{1/3} = x \implies x^3 = a \][/tex]
We are given the expression [tex]\( 64^{1/3} \)[/tex]. Thus, we need to determine:
[tex]\[ 64^{1/3} = x \][/tex]
such that:
[tex]\[ x^3 = 64 \][/tex]
Let's test possible values:
1. [tex]\( 4 \)[/tex]:
[tex]\[ 4^3 = 4 \times 4 \times 4 = 16 \times 4 = 64 \][/tex]
So, [tex]\( 4^3 = 64 \)[/tex]. This confirms that [tex]\( x = 4 \)[/tex] is the correct value.
Now, let's evaluate other choices:
2. [tex]\( \frac{64}{3} \)[/tex]:
[tex]\[ \left( \frac{64}{3} \right)^3 \][/tex]
This value is not an integer, and its cube would not equal 64.
3. [tex]\( 8 \)[/tex]:
[tex]\[ 8^3 = 8 \times 8 \times 8 = 64 \times 8 = 512 \][/tex]
This is not equal to 64.
4. [tex]\( \frac{4}{3} \)[/tex]:
[tex]\[ \left( \frac{4}{3} \right)^3 = \frac{4^3}{3^3} = \frac{64}{27} \][/tex]
This is not equal to 64.
Thus, we find that the value which equates to [tex]\( 64^{1/3} \)[/tex] is indeed [tex]\( 4 \)[/tex].
Therefore, the solution to the expression is:
[tex]\[ 64^{1/3} = 4 \][/tex]
The correct answer is:
A. 4
First, let's recall that the cube root of a number is the value that, when multiplied by itself three times, gives the original number. Symbolically, for any number [tex]\( a \)[/tex]:
[tex]\[ a^{1/3} = x \implies x^3 = a \][/tex]
We are given the expression [tex]\( 64^{1/3} \)[/tex]. Thus, we need to determine:
[tex]\[ 64^{1/3} = x \][/tex]
such that:
[tex]\[ x^3 = 64 \][/tex]
Let's test possible values:
1. [tex]\( 4 \)[/tex]:
[tex]\[ 4^3 = 4 \times 4 \times 4 = 16 \times 4 = 64 \][/tex]
So, [tex]\( 4^3 = 64 \)[/tex]. This confirms that [tex]\( x = 4 \)[/tex] is the correct value.
Now, let's evaluate other choices:
2. [tex]\( \frac{64}{3} \)[/tex]:
[tex]\[ \left( \frac{64}{3} \right)^3 \][/tex]
This value is not an integer, and its cube would not equal 64.
3. [tex]\( 8 \)[/tex]:
[tex]\[ 8^3 = 8 \times 8 \times 8 = 64 \times 8 = 512 \][/tex]
This is not equal to 64.
4. [tex]\( \frac{4}{3} \)[/tex]:
[tex]\[ \left( \frac{4}{3} \right)^3 = \frac{4^3}{3^3} = \frac{64}{27} \][/tex]
This is not equal to 64.
Thus, we find that the value which equates to [tex]\( 64^{1/3} \)[/tex] is indeed [tex]\( 4 \)[/tex].
Therefore, the solution to the expression is:
[tex]\[ 64^{1/3} = 4 \][/tex]
The correct answer is:
A. 4
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.