Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which choice is equivalent to the expression [tex]\(2^{7.19}\)[/tex], we need to simplify [tex]\(2^{7.19}\)[/tex] and compare it with each option.
First, let’s rewrite [tex]\(2^{7.19}\)[/tex]:
[tex]\[ 2^{7.19} = 2^{7 + 0.19} \][/tex]
The exponent [tex]\(7.19\)[/tex] can be broken down into [tex]\(7\)[/tex] and [tex]\(0.19\)[/tex]. Then we can use the property of exponents that [tex]\(a^{b+c} = a^b \cdot a^c\)[/tex]:
[tex]\[ 2^{7.19} = 2^7 \cdot 2^{0.19} \][/tex]
Next, we need to analyze the provided choices:
Choice A:
[tex]\[ 2^7 \cdot 2^{1/10} \cdot 2^{9/100} \][/tex]
We can combine the exponents using the product of powers property:
[tex]\[ 2^7 \cdot 2^{1/10} \cdot 2^{9/100} = 2^7 \cdot 2^{10/100} \cdot 2^{9/100} = 2^7 \cdot 2^{(10+9)/100} = 2^7 \cdot 2^{19/100} = 2^{7 + 0.19} \][/tex]
This matches our expression for [tex]\(2^{7.19}\)[/tex], indicating that choice A is an equivalent expression.
Choice B:
[tex]\[ 2^7 \cdot 2^{19/10} \][/tex]
Combine the exponents:
[tex]\[ 2^7 \cdot 2^{19/10} = 2^{7 + 19/10} = 2^{7 + 1.9} \][/tex]
This simplifies to [tex]\(2^{8.9}\)[/tex], which is not the same as [tex]\(2^{7.19}\)[/tex].
Choice C:
[tex]\[ 2^{7 + 1/10 + 9/10} \][/tex]
Simplify the combined exponent:
[tex]\[ 2^{7 + 1/10 + 9/10} = 2^{7 + 1} = 2^8 \][/tex]
This simplifies to [tex]\(2^8\)[/tex], which is not the same as [tex]\(2^{7.19}\)[/tex].
Choice D:
[tex]\[ 2^7 + 2^{1/10} + 2^{9/100} \][/tex]
This is a sum of three terms, not a product. The expression [tex]\(2^{7.19}\)[/tex] cannot be represented as the sum of exponential terms.
Based on the simplification and comparison, the equivalent expression to [tex]\(2^{7.19}\)[/tex] is:
[tex]\[ \boxed{A} \][/tex]
First, let’s rewrite [tex]\(2^{7.19}\)[/tex]:
[tex]\[ 2^{7.19} = 2^{7 + 0.19} \][/tex]
The exponent [tex]\(7.19\)[/tex] can be broken down into [tex]\(7\)[/tex] and [tex]\(0.19\)[/tex]. Then we can use the property of exponents that [tex]\(a^{b+c} = a^b \cdot a^c\)[/tex]:
[tex]\[ 2^{7.19} = 2^7 \cdot 2^{0.19} \][/tex]
Next, we need to analyze the provided choices:
Choice A:
[tex]\[ 2^7 \cdot 2^{1/10} \cdot 2^{9/100} \][/tex]
We can combine the exponents using the product of powers property:
[tex]\[ 2^7 \cdot 2^{1/10} \cdot 2^{9/100} = 2^7 \cdot 2^{10/100} \cdot 2^{9/100} = 2^7 \cdot 2^{(10+9)/100} = 2^7 \cdot 2^{19/100} = 2^{7 + 0.19} \][/tex]
This matches our expression for [tex]\(2^{7.19}\)[/tex], indicating that choice A is an equivalent expression.
Choice B:
[tex]\[ 2^7 \cdot 2^{19/10} \][/tex]
Combine the exponents:
[tex]\[ 2^7 \cdot 2^{19/10} = 2^{7 + 19/10} = 2^{7 + 1.9} \][/tex]
This simplifies to [tex]\(2^{8.9}\)[/tex], which is not the same as [tex]\(2^{7.19}\)[/tex].
Choice C:
[tex]\[ 2^{7 + 1/10 + 9/10} \][/tex]
Simplify the combined exponent:
[tex]\[ 2^{7 + 1/10 + 9/10} = 2^{7 + 1} = 2^8 \][/tex]
This simplifies to [tex]\(2^8\)[/tex], which is not the same as [tex]\(2^{7.19}\)[/tex].
Choice D:
[tex]\[ 2^7 + 2^{1/10} + 2^{9/100} \][/tex]
This is a sum of three terms, not a product. The expression [tex]\(2^{7.19}\)[/tex] cannot be represented as the sum of exponential terms.
Based on the simplification and comparison, the equivalent expression to [tex]\(2^{7.19}\)[/tex] is:
[tex]\[ \boxed{A} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.