Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Para resolver este problema, necesitamos usar la ecuación de Bernoulli. La ecuación de Bernoulli relaciona la presión, energía cinética y la energía potencial de un fluido que se mueve entre dos puntos.
Los datos que tenemos son:
- Velocidad inicial del agua, [tex]\( v_1 = 4 \, \text{m/s} \)[/tex]
- Presión inicial, [tex]\( P_1 = 32 \, \text{kPa} = 32,000 \, \text{Pa} \)[/tex]
- Presión final, [tex]\( P_2 = 18 \, \text{kPa} = 18,000 \, \text{Pa} \)[/tex]
- Cambio de altura, [tex]\( \Delta h = 2 \, \text{m} \)[/tex]
- Densidad del agua, [tex]\( \rho = 1000 \, \text{kg/m}^3 \)[/tex]
- Aceleración debida a la gravedad, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]
La ecuación de Bernoulli es:
[tex]\[ P_1 + \frac{1}{2} \rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2 \][/tex]
Asumimos que el punto inicial está en la planta baja donde la altura ([tex]\(h_1\)[/tex]) es 0. Entonces, [tex]\(h_1 = 0\)[/tex] y [tex]\( h_2 = 2 \, \text{m} \)[/tex].
Ahora sustituimos los valores conocidos en la ecuación de Bernoulli:
[tex]\[ P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2 \][/tex]
Re-estructuramos la ecuación para despejar [tex]\(v_2\)[/tex]:
[tex]\[ \frac{1}{2} \rho v_2^2 = P_1 - P_2 + \frac{1}{2} \rho v_1^2 - \rho g h_2 \][/tex]
Multiplicamos ambos lados por 2 para eliminar el [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \rho v_2^2 = 2(P_1 - P_2) + \rho v_1^2 - 2 \rho g h_2 \][/tex]
Dividimos entre [tex]\(\rho\)[/tex]:
[tex]\[ v_2^2 = \frac{2(P_1 - P_2) + \rho v_1^2 - 2 \rho g h_2}{\rho} \][/tex]
Factorizamos la ecuación:
[tex]\[ v_2^2 = \frac{2(P_1 - P_2) + \rho(v_1^2 - 2g h_2)}{\rho} \][/tex]
Ahora, sustituimos los valores numéricos:
[tex]\[ v_2^2 = \frac{2(32,000 \, \text{Pa} - 18,000 \, \text{Pa}) + 1000 \left(4^2 \, \text{m}^2/\text{s}^2 - 2 \cdot 9.81 \cdot 2 \, \text{m}^2/\text{s}^2 \right)}{1000} \][/tex]
Resolvemos dentro del paréntesis:
[tex]\[ v_2^2 = \frac{2(14,000 \, \text{Pa}) + 1000 \left(16 - 39.24 \right) \, \text{m}^2/\text{s}^2}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{2(14,000 \, \text{Pa}) - 1000 \cdot 23.24 \, \text{m}^2/\text{s}^2}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{28,000 \, \text{Pa} - 23,240 \, \text{Pa}}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{4,760 \, \text{Pa}}{1000} \][/tex]
[tex]\[ v_2^2 = 4.76 \, \text{m}^2/\text{s}^2 \][/tex]
Finalmente, tomamos la raíz cuadrada:
[tex]\[ v_2 = \sqrt{4.76} \, \text{m}/\text{s} \][/tex]
[tex]\[ v_2 \approx 2.18 \, \text{m}/\text{s} \][/tex]
Por lo tanto, la velocidad del agua en la tubería 2 m más arriba es aproximadamente [tex]\(2.18 \, \text{m/s}\)[/tex].
Los datos que tenemos son:
- Velocidad inicial del agua, [tex]\( v_1 = 4 \, \text{m/s} \)[/tex]
- Presión inicial, [tex]\( P_1 = 32 \, \text{kPa} = 32,000 \, \text{Pa} \)[/tex]
- Presión final, [tex]\( P_2 = 18 \, \text{kPa} = 18,000 \, \text{Pa} \)[/tex]
- Cambio de altura, [tex]\( \Delta h = 2 \, \text{m} \)[/tex]
- Densidad del agua, [tex]\( \rho = 1000 \, \text{kg/m}^3 \)[/tex]
- Aceleración debida a la gravedad, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]
La ecuación de Bernoulli es:
[tex]\[ P_1 + \frac{1}{2} \rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2 \][/tex]
Asumimos que el punto inicial está en la planta baja donde la altura ([tex]\(h_1\)[/tex]) es 0. Entonces, [tex]\(h_1 = 0\)[/tex] y [tex]\( h_2 = 2 \, \text{m} \)[/tex].
Ahora sustituimos los valores conocidos en la ecuación de Bernoulli:
[tex]\[ P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2 \][/tex]
Re-estructuramos la ecuación para despejar [tex]\(v_2\)[/tex]:
[tex]\[ \frac{1}{2} \rho v_2^2 = P_1 - P_2 + \frac{1}{2} \rho v_1^2 - \rho g h_2 \][/tex]
Multiplicamos ambos lados por 2 para eliminar el [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \rho v_2^2 = 2(P_1 - P_2) + \rho v_1^2 - 2 \rho g h_2 \][/tex]
Dividimos entre [tex]\(\rho\)[/tex]:
[tex]\[ v_2^2 = \frac{2(P_1 - P_2) + \rho v_1^2 - 2 \rho g h_2}{\rho} \][/tex]
Factorizamos la ecuación:
[tex]\[ v_2^2 = \frac{2(P_1 - P_2) + \rho(v_1^2 - 2g h_2)}{\rho} \][/tex]
Ahora, sustituimos los valores numéricos:
[tex]\[ v_2^2 = \frac{2(32,000 \, \text{Pa} - 18,000 \, \text{Pa}) + 1000 \left(4^2 \, \text{m}^2/\text{s}^2 - 2 \cdot 9.81 \cdot 2 \, \text{m}^2/\text{s}^2 \right)}{1000} \][/tex]
Resolvemos dentro del paréntesis:
[tex]\[ v_2^2 = \frac{2(14,000 \, \text{Pa}) + 1000 \left(16 - 39.24 \right) \, \text{m}^2/\text{s}^2}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{2(14,000 \, \text{Pa}) - 1000 \cdot 23.24 \, \text{m}^2/\text{s}^2}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{28,000 \, \text{Pa} - 23,240 \, \text{Pa}}{1000} \][/tex]
[tex]\[ v_2^2 = \frac{4,760 \, \text{Pa}}{1000} \][/tex]
[tex]\[ v_2^2 = 4.76 \, \text{m}^2/\text{s}^2 \][/tex]
Finalmente, tomamos la raíz cuadrada:
[tex]\[ v_2 = \sqrt{4.76} \, \text{m}/\text{s} \][/tex]
[tex]\[ v_2 \approx 2.18 \, \text{m}/\text{s} \][/tex]
Por lo tanto, la velocidad del agua en la tubería 2 m más arriba es aproximadamente [tex]\(2.18 \, \text{m/s}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.