Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the value of the expression [tex]\(\left(8^{\frac{5}{3}}\right)^{\frac{1}{5}}\)[/tex], we need to simplify it step by step.
Starting with the inner part of the expression:
[tex]\[ 8^{\frac{5}{3}} \][/tex]
First, recall that 8 can be written as a power of 2:
[tex]\[ 8 = 2^3 \][/tex]
So we can rewrite the expression as:
[tex]\[ 8^{\frac{5}{3}} = (2^3)^{\frac{5}{3}} \][/tex]
Using the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex], we can simplify it to:
[tex]\[ (2^3)^{\frac{5}{3}} = 2^{3 \cdot \frac{5}{3}} = 2^5 \][/tex]
Now, we'd need to take this result to the power of [tex]\(\frac{1}{5}\)[/tex]:
[tex]\[ \left(2^5\right)^{\frac{1}{5}} \][/tex]
Using the same property of exponents, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex], we have:
[tex]\[ (2^5)^{\frac{1}{5}} = 2^{5 \cdot \frac{1}{5}} = 2^1 = 2 \][/tex]
Hence, the value of the expression [tex]\(\left(8^{\frac{5}{3}}\right)^{\frac{1}{5}}\)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
This matches choice A.
Starting with the inner part of the expression:
[tex]\[ 8^{\frac{5}{3}} \][/tex]
First, recall that 8 can be written as a power of 2:
[tex]\[ 8 = 2^3 \][/tex]
So we can rewrite the expression as:
[tex]\[ 8^{\frac{5}{3}} = (2^3)^{\frac{5}{3}} \][/tex]
Using the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex], we can simplify it to:
[tex]\[ (2^3)^{\frac{5}{3}} = 2^{3 \cdot \frac{5}{3}} = 2^5 \][/tex]
Now, we'd need to take this result to the power of [tex]\(\frac{1}{5}\)[/tex]:
[tex]\[ \left(2^5\right)^{\frac{1}{5}} \][/tex]
Using the same property of exponents, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex], we have:
[tex]\[ (2^5)^{\frac{1}{5}} = 2^{5 \cdot \frac{1}{5}} = 2^1 = 2 \][/tex]
Hence, the value of the expression [tex]\(\left(8^{\frac{5}{3}}\right)^{\frac{1}{5}}\)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
This matches choice A.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.