Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

A cannon-ball is fired at 300 m/s at an angle of 60º to the horizontal. The ball hits the ground at __ km from the starting point. (Record your answer in the correct significant digits)

Sagot :

Answer:

Explanation:

To determine how far the cannonball travels horizontally before hitting the ground, we can use the following steps:

1. **Horizontal and Vertical Components of Initial Velocity:**

  - The initial velocity \( v_0 \) of the cannonball is 300 m/s at an angle of 60º to the horizontal.

  - The horizontal component \( v_{0x} \) of the velocity is \( v_{0x} = v_0 \cos \theta \), where \( \theta = 60^\circ \).

  \[

  v_{0x} = 300 \cos 60^\circ = 300 \times \frac{1}{2} = 150 \text{ m/s}

  \]

  - The vertical component \( v_{0y} \) of the velocity is \( v_{0y} = v_0 \sin \theta \).

  \[

  v_{0y} = 300 \sin 60^\circ = 300 \times \frac{\sqrt{3}}{2} = 150 \sqrt{3} \text{ m/s}

  \]

2. **Time of Flight:**

  - The time \( t \) of flight can be found using the vertical motion equation \( y = v_{0y} t - \frac{1}{2} g t^2 \), where \( y = 0 \) (since it returns to the same height).

  \[

  0 = 150 \sqrt{3} \cdot t - \frac{1}{2} \cdot 9.81 \cdot t^2

  \]

  Solving for \( t \):

  \[

  t \left( 150 \sqrt{3} - \frac{1}{2} \cdot 9.81 \cdot t \right) = 0

  \]

  \[

  t = 0 \quad \text{or} \quad t = \frac{2 \cdot 150 \sqrt{3}}{9.81} \approx 17.19 \text{ s}

  \]

3. **Horizontal Distance:**

  - The horizontal distance \( R \) traveled by the cannonball is \( R = v_{0x} \cdot t \).

  \[

  R = 150 \text{ m/s} \cdot 17.19 \text{ s} \approx 2578.5 \text{ m}

  \]

4. **Conversion to Kilometers:**

  - Converting the distance to kilometers:

  \[

  R \approx \frac{2578.5 \text{ m}}{1000} = 2.5785 \text{ km}

  \]

Therefore, the cannonball hits the ground at approximately **2.58 km** from the starting point.