Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's carefully examine each of the given numbers to determine which one is irrational.
1. Number 0:
- The number 0 is considered a rational number because it can be expressed as the ratio of two integers, [tex]\( \frac{0}{1} \)[/tex].
2. Number [tex]\( -\frac{1}{2} \)[/tex]:
- The number [tex]\( -\frac{1}{2} \)[/tex] is rational because it is also a ratio of two integers, [tex]\( -1 \)[/tex] and [tex]\( 2 \)[/tex].
3. Number [tex]\( 0 . \overline{1257} \)[/tex]:
- This number represents a repeating decimal, specifically [tex]\( 0.125712571257... \)[/tex]. Any repeating or terminating decimal can be expressed as a fraction. Therefore, this is a rational number.
4. Number [tex]\( \sqrt{29} \)[/tex]:
- To determine if [tex]\( \sqrt{29} \)[/tex] is irrational, we note that 29 is not a perfect square (no integer squared equals 29). The square root of a non-perfect square is always an irrational number because it cannot be expressed as a ratio of two integers. The decimal representation of [tex]\( \sqrt{29} \)[/tex] is non-terminating and non-repeating.
Based on these observations:
- [tex]\( 0 \)[/tex] is rational.
- [tex]\( -\frac{1}{2} \)[/tex] is rational.
- [tex]\( 0 . \overline{1257} \)[/tex] is rational.
- [tex]\( \sqrt{29} \)[/tex] is irrational.
Therefore, the number that is irrational among the given options is [tex]\( \sqrt{29} \)[/tex].
Numerically, the value of [tex]\( \sqrt{29} \)[/tex] approximately equals [tex]\( 5.385164807134504 \)[/tex] which confirms the irrational nature of this number.
1. Number 0:
- The number 0 is considered a rational number because it can be expressed as the ratio of two integers, [tex]\( \frac{0}{1} \)[/tex].
2. Number [tex]\( -\frac{1}{2} \)[/tex]:
- The number [tex]\( -\frac{1}{2} \)[/tex] is rational because it is also a ratio of two integers, [tex]\( -1 \)[/tex] and [tex]\( 2 \)[/tex].
3. Number [tex]\( 0 . \overline{1257} \)[/tex]:
- This number represents a repeating decimal, specifically [tex]\( 0.125712571257... \)[/tex]. Any repeating or terminating decimal can be expressed as a fraction. Therefore, this is a rational number.
4. Number [tex]\( \sqrt{29} \)[/tex]:
- To determine if [tex]\( \sqrt{29} \)[/tex] is irrational, we note that 29 is not a perfect square (no integer squared equals 29). The square root of a non-perfect square is always an irrational number because it cannot be expressed as a ratio of two integers. The decimal representation of [tex]\( \sqrt{29} \)[/tex] is non-terminating and non-repeating.
Based on these observations:
- [tex]\( 0 \)[/tex] is rational.
- [tex]\( -\frac{1}{2} \)[/tex] is rational.
- [tex]\( 0 . \overline{1257} \)[/tex] is rational.
- [tex]\( \sqrt{29} \)[/tex] is irrational.
Therefore, the number that is irrational among the given options is [tex]\( \sqrt{29} \)[/tex].
Numerically, the value of [tex]\( \sqrt{29} \)[/tex] approximately equals [tex]\( 5.385164807134504 \)[/tex] which confirms the irrational nature of this number.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.