At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's consider the position function [tex]\( s(t) = 8 \sin(3t) \)[/tex], which describes a block bouncing vertically on a spring.
To find the average velocity over a given time interval [tex]\([t_0, t_1]\)[/tex], we use the formula:
[tex]\[ \text{Average Velocity} = \frac{s(t_1) - s(t_0)}{t_1 - t_0} \][/tex]
We need to calculate the average velocities over various time intervals and fill in the table. Let's list the intervals and then their corresponding average velocities.
The time intervals are:
1. [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]
2. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]
3. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]
4. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]
5. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]
Using the given position function [tex]\( s(t) \)[/tex], let's calculate the average velocities for each interval:
- For the interval [tex]\( \left[\frac{\pi}{2}, \pi\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 5.092958178940653 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 3.5730808699515273 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.3599730008099652 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.03599997299997112 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.0035999999692397167 \][/tex]
We can now fill in the table with these results.
[tex]\[ \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Time \\ Interval \end{tabular} & \begin{tabular}{c} Average \\ Velocity \end{tabular} \\ \hline \(\left[\frac{\pi}{2}, \pi\right]\) & 5.092958178940653 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\) & 3.5730808699515273 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\) & 0.3599730008099652 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\) & 0.03599997299997112 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\) & 0.0035999999692397167 \\ \hline \end{tabular} \][/tex]
From the table, we observe that as the interval gets smaller and smaller, the average velocity approaches zero. Hence, we can make the conjecture that the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex] is approximately zero. This result is confirmed by the smallest average velocities in the list above, suggesting the instantaneous velocity value is [tex]\(-4.408728476930472 \times 10^{-15}\)[/tex], which is extremely close to zero.
To find the average velocity over a given time interval [tex]\([t_0, t_1]\)[/tex], we use the formula:
[tex]\[ \text{Average Velocity} = \frac{s(t_1) - s(t_0)}{t_1 - t_0} \][/tex]
We need to calculate the average velocities over various time intervals and fill in the table. Let's list the intervals and then their corresponding average velocities.
The time intervals are:
1. [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]
2. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]
3. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]
4. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]
5. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]
Using the given position function [tex]\( s(t) \)[/tex], let's calculate the average velocities for each interval:
- For the interval [tex]\( \left[\frac{\pi}{2}, \pi\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 5.092958178940653 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 3.5730808699515273 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.3599730008099652 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.03599997299997112 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.0035999999692397167 \][/tex]
We can now fill in the table with these results.
[tex]\[ \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Time \\ Interval \end{tabular} & \begin{tabular}{c} Average \\ Velocity \end{tabular} \\ \hline \(\left[\frac{\pi}{2}, \pi\right]\) & 5.092958178940653 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\) & 3.5730808699515273 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\) & 0.3599730008099652 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\) & 0.03599997299997112 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\) & 0.0035999999692397167 \\ \hline \end{tabular} \][/tex]
From the table, we observe that as the interval gets smaller and smaller, the average velocity approaches zero. Hence, we can make the conjecture that the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex] is approximately zero. This result is confirmed by the smallest average velocities in the list above, suggesting the instantaneous velocity value is [tex]\(-4.408728476930472 \times 10^{-15}\)[/tex], which is extremely close to zero.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.