Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the constants [tex]\( p \)[/tex] and [tex]\( q \)[/tex] in the relation [tex]\(\left(\frac{s}{t}\right)^p = q e^{-t}\)[/tex], we will transform the equation and use a linear regression approach on logarithmic scales. Here’s a step-by-step outline to solve this problem:
1. Transform the Relation:
Start with the given equation:
[tex]\[ \left(\frac{s}{t}\right)^p = q e^{-t} \][/tex]
Take the natural logarithm of both sides:
[tex]\[ \ln\left(\left(\frac{s}{t}\right)^p\right) = \ln \left( q e^{-t} \right) \][/tex]
Apply logarithm properties:
[tex]\[ p \cdot \ln \left( \frac{s}{t} \right) = \ln(q) - t \][/tex]
Simplify further:
[tex]\[ p \left( \ln(s) - \ln(t) \right) = \ln(q) - t \][/tex]
2. Prepare the Data for Linear Regression:
Let's list the values of [tex]\( t \)[/tex] and [tex]\( s \)[/tex] from the provided table.
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline t & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\ \hline s & 1.09 & 1.96 & 2.67 & 3.22 & 3.64 \\ \hline \end{array} \][/tex]
3. Compute [tex]\(\ln(s)\)[/tex] and [tex]\(\ln(t)\)[/tex] for Each Pair ([tex]\(t, s\)[/tex]):
[tex]\[ \begin{array}{|c|c|c|} \hline t & s & \ln(s) & \ln(t) \\ \hline 0.2 & 1.09 & 0.0862 & -1.6094 \\ \hline 0.4 & 1.96 & 0.6729 & -0.9163 \\ \hline 0.6 & 2.67 & 0.9821 & -0.5108 \\ \hline 0.8 & 3.22 & 1.1694 & -0.2231 \\ \hline 1.0 & 3.64 & 1.2920 & 0.0000 \\ \hline \end{array} \][/tex]
4. Perform Linear Regression on [tex]\( \ln(s) \)[/tex] vs [tex]\( \ln(t) \)[/tex]:
We assume:
[tex]\[ y = \ln(s) \quad \text{and} \quad x = \ln(t) \][/tex]
The linear relation [tex]\( y = mx + b \)[/tex] can be determined by fitting a line to the data points [tex]\((\ln(t), \ln(s))\)[/tex].
From the previous calculation:
- The slope ([tex]\( m \)[/tex]) of this linear regression is 0.7564.
- The intercept ([tex]\( b \)[/tex]) of this linear regression is 1.3336.
5. Calculate [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- The slope ([tex]\( m \)[/tex]) corresponds to the exponent [tex]\( p \)[/tex]:
[tex]\[ p = 0.7564 \][/tex]
- The intercept ([tex]\( b \)[/tex]) corresponds to [tex]\( \ln(q) \)[/tex]:
[tex]\[ \ln(q) = 1.3336 \implies q = e^{1.3336} = 3.7947 \][/tex]
Finally, the values of the constants are:
[tex]\[ p \approx 0.756 \quad \text{and} \quad q \approx 3.795 \][/tex]
Thus, the relationship between [tex]\( s \)[/tex] and [tex]\( t \)[/tex] is successfully determined.
1. Transform the Relation:
Start with the given equation:
[tex]\[ \left(\frac{s}{t}\right)^p = q e^{-t} \][/tex]
Take the natural logarithm of both sides:
[tex]\[ \ln\left(\left(\frac{s}{t}\right)^p\right) = \ln \left( q e^{-t} \right) \][/tex]
Apply logarithm properties:
[tex]\[ p \cdot \ln \left( \frac{s}{t} \right) = \ln(q) - t \][/tex]
Simplify further:
[tex]\[ p \left( \ln(s) - \ln(t) \right) = \ln(q) - t \][/tex]
2. Prepare the Data for Linear Regression:
Let's list the values of [tex]\( t \)[/tex] and [tex]\( s \)[/tex] from the provided table.
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline t & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\ \hline s & 1.09 & 1.96 & 2.67 & 3.22 & 3.64 \\ \hline \end{array} \][/tex]
3. Compute [tex]\(\ln(s)\)[/tex] and [tex]\(\ln(t)\)[/tex] for Each Pair ([tex]\(t, s\)[/tex]):
[tex]\[ \begin{array}{|c|c|c|} \hline t & s & \ln(s) & \ln(t) \\ \hline 0.2 & 1.09 & 0.0862 & -1.6094 \\ \hline 0.4 & 1.96 & 0.6729 & -0.9163 \\ \hline 0.6 & 2.67 & 0.9821 & -0.5108 \\ \hline 0.8 & 3.22 & 1.1694 & -0.2231 \\ \hline 1.0 & 3.64 & 1.2920 & 0.0000 \\ \hline \end{array} \][/tex]
4. Perform Linear Regression on [tex]\( \ln(s) \)[/tex] vs [tex]\( \ln(t) \)[/tex]:
We assume:
[tex]\[ y = \ln(s) \quad \text{and} \quad x = \ln(t) \][/tex]
The linear relation [tex]\( y = mx + b \)[/tex] can be determined by fitting a line to the data points [tex]\((\ln(t), \ln(s))\)[/tex].
From the previous calculation:
- The slope ([tex]\( m \)[/tex]) of this linear regression is 0.7564.
- The intercept ([tex]\( b \)[/tex]) of this linear regression is 1.3336.
5. Calculate [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- The slope ([tex]\( m \)[/tex]) corresponds to the exponent [tex]\( p \)[/tex]:
[tex]\[ p = 0.7564 \][/tex]
- The intercept ([tex]\( b \)[/tex]) corresponds to [tex]\( \ln(q) \)[/tex]:
[tex]\[ \ln(q) = 1.3336 \implies q = e^{1.3336} = 3.7947 \][/tex]
Finally, the values of the constants are:
[tex]\[ p \approx 0.756 \quad \text{and} \quad q \approx 3.795 \][/tex]
Thus, the relationship between [tex]\( s \)[/tex] and [tex]\( t \)[/tex] is successfully determined.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.